RECYCLING OF ASHES FROM BIOMASS COMBUSTION AS RAW MATERIAL FOR MORTARS

Autores/as

DOI:

https://doi.org/10.29183/2447-3073.MIX2021.v7.n2.137-146

Palabras clave:

Cinzas pesadas, Cinzas volantes, Reciclagem, Argamassa

Resumen

Rendering mortars were prepared by replacing conventional sands, namely coarse sand (CS) and fine sand (FS), by different dosages of biomass dry bottom ash (BA) and fly ash (FA). Bottom ash was treated by sieving and washing and called treated bottom ash (TBA). All these ashes were characterized, and their effects on the physical and mechanical characteristics of mortars were studied. The dosage of water required to maintain workability of samples formulated with TBA, BA, and FA was not significantly different from the volume used to formulate a reference mortar, since the physical characteristics of the ashes used were similar to those of CS and FS. Workability, weight variation, unrestrained shrinkage and compressive strength were measured. The results showed that the pre-processing of BA and FA has to be properly characterized in the effort to reuse these materials as effective replacements of natural sand in mortars, and the associated environmental aspects should be further investigated to support this recycling strategy.

Biografía del autor/a

Regina Célia Espinosa Modolo, Universidade do Vale do Rio dos Sinos (UNISINOS - RS)

PPG's em Engenharia Civil e Engenharia Mecânica da Universidade do Vale do Rio dos Sinos (UNISINOS - RS)

Guilherme Ascensão, Universidade de Aveiro (UA - PT)

Departamento de Engenharia de Materiais e Cerâmica (CICECO)

Luciano Senff, Universidade Federal de Santa Catarina (UFSC - SC)

Departamento de Engenharias da Mobilidade

Francisco Roger Carneiro Ribeiro, Universidade do Vale do Rio dos Sinos (UNISINOS-RS)

PPG em Engenharia Civil na Universidade Vale do Rio dos Sinos (UNISINOS-RS)

Luis António da Cruz Tarelho, Universidade de Aveiro (UA - PT)

Departamento do Ambiente e Planejamento (CESAM)

Victor Miguel Ferreira, Universidade de Aveiro (UA - PT)

Departamento de Engenharia Civil (CICECO)

João António Labrincha, Universidade de Aveiro (UA - PT)

Departamento de Engenharia de Materiais e Cerâmica (CICECO)

António Santos Silva, Universidade de Lisboa

Laboratório Nacional de Engenharia Civil (LNEC)

Carlos Alberto Mendes Moraes, Universidade do Vale do Rio dos Sinos (UNISINOS - RS)

PPG's em Engenharia Civil e Engenharia Mecânica da Universidade do Vale do Rio dos Sinos (UNISINOS - RS)

Citas

BLEISCHWITZ, R., BAHN-WALKOWIAK, B. Sustainable developed in European aggregate industry - A case for sectoral strategies. Environmental and Energy, Germany, 2006.

CALLEJÓN-FERRE A. J., CARREÑO-SÁNCHES J., SUÁREZ-MEDINA F. J. PÉREZ-ALONSO, J., VELÁSQUEZ-MARTÍ, B. Prediction models for higher heating value based on the structural analysis of the biomass of plant remains from the greenhouses of Almería (Spain). Fuel,

v. 116, p. 377-387, 2014.

CCDRLVTD. Decrete n.º 209/2004. Portuguese legislation about the European list of wastes in accordance with Commission Decision 2000/532/EC of 3 May 2000 replacing Decision 94/3/EC establishing a list of wastes pursuant to Article 1(a) of Council Directive 75/442/EEC on waste and Council Decision 94/904/EC establishing a list of hazardous waste pursuant to Article 1(4) of Council Directive 91/689/EEC on hazardous waste.

CHEAH, C. B., RAMLI, M. Mechanical strength, durability and drying shrinkage of structural mortar containing HCWA as partial replacement of cement. Construction and Builiding Materials, v. 30, p. 320-329, 2012.

DAHL, O., NURMESNIEMI, H., PÖYKIÖ, R., WATKINS, G. Comparison of the characteristics of bottom ash and fly ash from a medium-size (32MW) municipal district heating plant incinerating forest residues and peat in fluidised-bed boiler. Fuel Processing Technology, v. 90, p. 871-878, 2009.

EN 1015-10. Methods of test for mortar for masonry – Part 10: Determination of dry bulk density of hardened mortar, 1999.

EN 1015-11. Methods of test for mortar for masonry – Part 11: Determination of flexural and compressive strength of hardened mortar, 1999.

EN 1015-3. Methods of test for mortar for masonry: determination of consistence of fresh mortar (by flow table), 2007.

EN 933-1. Tests for geometrical properties of aggregates, Part 1: Determination of particle size distribution, 2000.

HINOJOSA, M. J. R., GALVÍN, A. P., AGRELA, F., PERIANES, M., BARBUDO, A. Potential use of biomass ash as alternative construction material: Conflictive Chemical parameters according to Technical regulations. Fuel, v. 128, p. 248-259, 2014.

HÖJER, M., AHLROTH, S., DREBORG, K. H., EKVALL, T., FINNVEDEN, G., HJELM, O., HOCHSCHORNER, E., NILSSON, M., PALM, V. Scenarios in selected tools for environmental systems analysis. Journal of Cleaner Production, v. 16, p. 1958-1970, 2008.

LABRINCHA, J. A., MARQUES, J. I., HAJJAJI, W., SENFF, L., ZANELLI, C., DONDI, M., ROCHA, F. Novel inorganic products based on industrial wastes. Waste and Biomass Valorization, v. 5, p. 385-392, 2014.

MEHTA, P. K., MONTEIRO, P. J. M. Concrete – microstructure, properties, and materials, McGraw-Hill, New York, 1993.

MODOLO R.C.E. Valorization of solid wastes from cellulose and paper industry, PhD thesis, University of Aveiro, Aveiro, Portugal, 2014.

MODOLO, R. C. E., FERREIRA V. M., TARELHO, L. A., LABRINCHA, J. A., SENFF, L., SILVA, L. Mortar formulations with bottom ash from biomass combustion. Construction and Building Materials, v. 45, p. 275-281, 2013.

MODOLO, R. C. E., SENFF, L., FERREIRA, V. M. TARELHO, L. A. C., MORAES, C. A. M. Fly ash from biomass combustion as replacement raw material and its influence on the mortars durability. Journal of Material Cycles and Waste Management, v. 11, p. 1-10, 2017.

MODOLO, R. C. E., SILVA, T., SENFF, L., TARELHO, L. A. C., LABRINCHA, J. A., FERREIRA, V. M., SILVA, L. Bottom ash from biomass combustion in BFB and its use in adhesive-mortars. Fuel Processing Technology, v.129, p. 192-202, 2015.

MORAES, C. A. M., FERNANDES, I. J., CALHEIRO, D., KIELING, A. G., BREHM, F. A., RIGON, M. R., FILHO, J. A. B., SCHNEIDER, I. A. H., OSORIO, E. Review of the rice production cycle: By-products and the main applications focusing on rice husk combustion and ash recycling. Waste Management and Research,

v. 32, p. 1034-1048, 2014.

NAWY, E. G. Fundamentals of high-performance concrete, 2ª Edition, Wiley, New York, 2001.

OBERNBERGER, I., BIEDERMANN, F., WIDMANN, W., RIEDL, R. Concentrations of inorganic elements in biomass fuels and recovery in the different ash fractions. Biomass and Bioenergy, v. 12, p. 211-224, 1997.

PALŠAUSKAS, M., PETKEVIČIUS, S. A new approach to renewable energy: new mixed biomass pellets. Journal of Food, Agriculture and Environment, v. 11, p. 798-802, 2013.

RAJAMMA, R., SENFF, L., RIBEIRO, M. J., LABRINCHA, J. A., BALL, R. J., ALLEN, G. C., FERREIRA, V. M. Biomass fly ash effect on fresh and hardened state properties of cement based materials. Composites Part B, v. 77, p. 1-9, 2015.

RAMACHANDRAN, V. S., ZHANG, C. Influence of CaCO3 on hydration and microstructural characteristics of tricalcium silicate. II Cemento, v. 83, p. 129-152, 1986.

SÁNCHEZ, L. E. Avaliação de Impacto Ambiental: conceitos e métodos, 2ª edition, Oficina de Textos, São Paulo, 2013.

SENFF L., HOTZA D., LABRINCHA J.A. Effect of lightweight aggregates addition on the rheological properties and the hardened state of mortars. Applied Rheology, v. 21, p. 1-8, 2011.

SENFF, L., MODOLO, R. C. E., ASCENSÃO, G., HOTZA, D., FERREIRA, V. M., LABRINCHA, J.A. Development of mortars containing superabsorbent polymer. Construction and Building Materials, v. 95, p. 575–584, 2015.

SENFF, L., MODOLO, R. C. E., SILVA, A. S., FERREIRA, V. M., HOTZA, D., LABRINCHA, J. A. Influence of red mud addition on rheological behavior and hardened properties of mortars. Construction and Building Materials, v. 65,

p. 84–91, 2014.

SENFF, L., TOBALDI, D. M., LEMES-RACHADEL, P., LABRINCHA, J. A., HOTZA, D. The influence of TiO2 and ZnO powder mixtures on photocatalytic activity and rheological behavior of cement pastes. Construction and Building Materials, v. 65, p. 191–200, 2014.

STEENARI, B. M., FEDJE, K. K., Addition of kaolin as potassium sorbent in the combustion of wood fuel – Effects on fly ash properties. Fuel,

v. 89, p. 2026–2032, 2010.

TARELHO, L. A. C., TEIXEIRA, E. R., SILVA, D. F. R., MODOLO, R. C. E. LABRINCHA, J. A., ROCHA, F. Characteristics of distinct ash flows in a biomass thermal power plant with bubbling fluidised bed combustor. Energy, v. 90, p. 387-402, 2015.

VASSILEV, S. V., BAXTER, D., ANDERSEN, L. K, VASSILEVA, C. G. An overview of the composition and application of biomass ash –

Part 2. Fuel, v.105, p. 19-39, 2013.

ZOBEL, T., ALMROTH, C., BRESKY, J. BURMAN, J-O. Identification and assessment of environment aspects in an EMS context: an approach to a new reproducible method based on LCV methodology. Journal of Cleaner Production, v. 10, p. 381-396, 2002.

Publicado

2021-04-19

Cómo citar

Modolo, R. C. E., Ascensão, G., Senff, L., Ribeiro, F. R. C., Tarelho, L. A. da C., Ferreira, V. M., Labrincha, J. A., Silva, A. S., & Moraes, C. A. M. (2021). RECYCLING OF ASHES FROM BIOMASS COMBUSTION AS RAW MATERIAL FOR MORTARS. IX Sustentável, 7(2), 137–146. https://doi.org/10.29183/2447-3073.MIX2021.v7.n2.137-146

Artículos más leídos del mismo autor/a