INVESTIGATION OF THE RAW MATERIALS FROM THE PRECISION CASTING PROCESS FOR VIABILITY EVALUATION OF RECYCLING THE GENERATED CERAMIC SHELL WASTE

Autores/as

DOI:

https://doi.org/10.29183/2447-3073.MIX2022.v8.n1.53-65

Palabras clave:

Resíduo casca cerâmica, Fundição de precisão, Caracterização de materiais, Reciclagem

Resumen

The goal of this study is evaluate the recycling potential of the solid waste generated in the precision casting industrial process. The methodology consists in the physical, chemical, mineralogical, and thermal (DTA) characterization of the raw materials used in the industrial process was carried out, as well as of the generated solid waste, called ceramic shell waste (CSW). The results obtained demonstrated that the silica raw material suffers transformation of phases. Analyzing the waste, it was verified that it constitutes the crystalline silica phase of quartz and, in this way, it must be benefited in order to separate the noble materials present, such as chamottes and zirconium components. Furthermore, the fraction of crystalline silica, which, if reused, may give fragility to the recycled ceramic shell due to abrupt volume changes characterized by the silica polymorphs, must be removed.

Biografía del autor/a

Alini Luísa Diehl Camacho, Universidade do Vale do Rio dos Sinos - UNISINOS

Laboratório de Caracterização e Valorização de Materiais - LCVMat / UNISINOS

Regina Célia Espinosa Modolo, UNISINOS

Programa de pós graduação em Engenharia Civil e Engenharia Mecânica - UNISINOS

Victor Miguel Ferreira, Universidade de Aveiro - Portugal

Departamento de Engenharia Civil

Fernando Joaquim Tavares Rocha, Universidade de Aveiro - Portugal

Departamento de Geociências

Carlos Alberto Mendes Moraes, Unisinos

Programa de pós graduação em Engenharia Civil e Engenharia Mecânica - UNISINOS

Citas

ALVES, H. P. A.; SILVA, J. B.; CAMPOS, L. F. A.; TORRES, S. M.; DUTRA, R. P. S.; MACEDO, D. A. Preparation of mullite based ceramics from clay-kaolin waste mixtures. Ceramics International, 2016: 42: 19086-19090.

AMIRA, S.; DUBÉ, D.; TREMBLAY, R. Method to determine hot permeability and strength of ceramic shell moulds. Journal of materials processing technology, 2011:211; 1336-1340.

Arranjo Produtivo Local – Metal Mecânico e Automotivo. Plano de Gerencialmento de Resíduos Sólidos. 67 f. 2014. Porto Alegre, RS. Available at : https://sedetur.rs.gov.br/upload/ arqui vos/carga20170527/04092704-1426534450-pgrs-apl-metal-mecanico-e-automotivo-rs.pdf. Access: aug. 2020.

Associação Brasileira de Normas Técnicas (ABNT). NBR 10007: Amostragem de resíduos sólidos. Rio de Janeiro, 2004.

BLACK, J. T.; DEGARMO, E. P.; KOHSER, R. Materials and Processes in Manufaturing. 7th ed. New York, 1988.

BOBROWSKI, A.; DANKO, R.; HOLTZER, M.; ZYCH, J. Reclamation of material from used ceramic moulds applied in the investment casting technology. Archives of foundry engineering, 2010;10:199-204.

BRAGANÇA, S. R.; BERGMANN, C. P. Materiais de construção civil e princípios de ciência e engenharia de materiais. Ed. G. C. Isaia. 2.ed. São Paulo. Cap. 20, p. 1712. IBRACON, 2010.

CAMACHO, A. L. D.; MORAES, C. A. M.; MODOLO, R. E. Caracterização térmica e estrutural de casca cerâmica utilizada no processo de fundição. CONAF, 2017. 17º Congresso Abifa de Fundição, 26-29 sept., 2017. São Paulo, SP, Brazil.

CAMACHO, A. L. D. Caracterização e valorização de material casca cerâmica gerado no processo de fundição de precisão. 2017. 142 p. Dissertation (Masters in Civil Engineering). Universidade do Vale do Rio dos Sinos, São Leopoldo, 2017.

CARUBA, R.; BAUMER, A.; GANTEAUME, M.; LACCONI, P. An experimental study of hydroxyl groups and water in synthetic and natural zircons: a model of the metamict state. Am Miner, 1985; 70: 1224-1231.

DONG, Y., BU, K.; DOU, Y.; ZHANG, D. Determination of interfacial heat-transfer coefficient during investment-casting process of single-crystal blades. Journal of Materials Processing Technology, 2011: 211; 2123-2131.

EDRAKI, M.; BaAUMGARTL, T.; MANLAPIG, E.; BRADSHAW, D.; FRANKS, D. M.; MORAN, C. J. Designing mine tailings for better environmental, social and economic outcomes: a review of alternative approaches. Journal of Cleaner Production, 2014: 84; 411-420.

NOVAES DE OLIVEIRA, A. P.; DAL BÓ FILHO, H.; CARVALHO, A. C.; DE OLIVEIRA MAIA, B. G.; CESCONETO, F. R.; RAUPP-PEREIRA, F. Desenvolvimento de isolantes térmicos a partir de fontes alternativas minerais. Cerâmica industrial, 2014: 19; 38-42.

DRAJEWICZ, M.; PYTEL, M. Recycling process of casting molds applying to precision castings. Journal of Achievements in Materials and Manufacturing Engineering. 2012; 55:(2) 661-667.

International Organization for Standardization (ISO). ISO 13320: particle size analysis – Laser diffraction methods (E) content. Geneva, 2009.

ISMAEL, M. R.; VALENZUELA, F. A. O.; POLITO, L. A.; PANDOLFELLI, V. C. Propriedades termo-mecânicas de concretos refratários ligados por sílica coloidal. Cerâmica. 2007; 53: 314-318.

KAZEMI, A.; FAGHIHI-SANI, M.A.; ALIZADEH, H.R. Investigation on cristobalite crystallization in silica-based ceramic cores for investment casting. Journal of the European Ceramic Society. 2013; 33: 3397-3402.

LACERDA, S. S.; JOSÉ, A. A.; BORDIN, S. E. 2011. Valorização da casca cerâmica residual do processo de microfusão por incorporação em formulação de refratários. Abifa, 137:88-95.

LEE JH. Ternary phase analysis of interfacial silicates grown in HfOx/Si and Hf/SiO2/Si systems. Thin Solid Films. 2005; 472: 317–22.

LEONARDO, I. M. Avaliação microestrutural e propriedades de cascas cerâmicas contendo diferentes tamanhos e concentrações de nanopartículas de sílica coloidal. 2013. 247 p. Tese (Doutorado em Engenharia Metalúrgica, Materiais e de Minas). Universidade Federal de Minas Gerais, Belo Horizonte, MG. 2013.

LIAO, D.; FAN, Z.; JIANG, W.; SHEN, E.; LIU, D. Study on the surface roughness of ceramic shells and castings in the ceramic shell casting process based on expandable pattern. Journal of Materials Processing Technology. 2011; 211: 1465-1470.

MACHADO, I. M. L. 2001. Tecnologia básica do processo de fundição por cera perdida. Senai, Belo Horizonte, Brasil.

MACHADO, I. Avaliação microestrutural de cascas cerâmicas utilizadas na produção de moldes para o processo de fundição por cera perdida. 2005. 119 p. Dissertation (Masters in Metalurgical and Mining Engineering). Universidade Federal de Minas Gerais, Belo Horizonte, 2005.

MACHADO, C. Reutilização da casca cerâmica do processo de fundição por cera perdida, como adição em matrizes cimentícias. 2013. 91 p. Dissertation (Masters in Materials Engineering). Centro federal de educação tecnológica de Minas Gerais – CEFET-MG, Belo Horizonte, 2013.

MALENSEK, N.; DUCMAN, V.; MIRTIC, B. Recycled granulate obtained from waste alumina-rich refractory powder by the cold bonding process. Ceramics International. 2015: 41; 8996-9002.

MICROMERITICS. Surface Area and Pore Structure by Gas Adsorption, chapter 3, 2016.

PATTNAIK, S.; KURANAKAR, D. B.; JHA, P. K. Developments in investment casting process – A review. Journal of Materials Processing Technology. 2012: 212; 2332-2348.

PATTNAIK, S. An investigation on enhancing ceramic shell properties using naturally available additives. Int J Manuf Technol. 2017: 91; 3061-3078.

PRASAD, R. Progress in Investment Castings. Available at: <http://cdn.intechopen.com/pdfs/ 39309/In Tech-Progress_in_investment_castings .pdf> Acess: July. 2021.

PETERS, T. M.; TWAROG, D. L. The feasibility of reclaiming investment shell material from investment casting. Hazardous Waste Research and Information Center One East Hazelwood Drive. Champaign, Illinois 61820, HWRIC Project RRT-10, 1992.

RAFIQUE, M. M. A.; IGBAL, J. Modeling and simulation of heat transfer phenomena during investment casting. International Journal of Heat and Mass Transfer. 2009: 52; 2132-2139.

REDDY, A. C. Thermo-physical properties of fused silica investment shell moulds at preheat conditions of steel casting. National Conference on Advanced Materials and Manufacturing Techniques. March 08-09, 2004.

SABEDOT, S.; WOTRUBA, H.; SAMPAIO, C. H.; PETTER, C. O.; de BRUM, I. A. S. Mineral processing of low quality zircon concentrates and preconcentrates. Mineral Processing and Extractive Metallurgy. 2009: 118; 114-121.

SCHNEIDER, H. Thermal expansion of mullite. J. Am. Ceram. Soc. 1990: 73; 2073-2076.

SOUZA, L. P. de F.; MANSUR, H. S. Production and characterization of ceramic pieces obtained by slip casting using powder wastes. Journal of Materials Processing Technology. 2004: 145; 14-20.

VALENZA, F.; BOTTER, R.; CIRILLO, P.; BARBERIS, F.; DI FOGGIA, M.; SOTTILE, D. Sintering of waste of superalloy casting investment shells as a fine aggregate for refractory tiles. Ceramics international. 2010: 36; 459-463.

WILSON, P. J.; BLACKBURN, S.; GREENWOOD, R. W.; PRAJAPTI, B.; SMALLEY, K. The role of zircon particle size distribution, surface area and contamination on the properties of silica–zircon ceramic materials. Journal of the European Ceramic Society. 2011: 31; 1849-1855.

XU, M. Characterization of investment shell thermal properties. 2015. 119f. Doctorate Thesis in Metalurgical Engineering. Universidade Missouri, Ciência e Tecnologia, USA, 2015.

XU, M.; LEKAKH, S. N.; RICHARDS, V. L. Thermal property database for investment casting shells. International Journal of Metalcasting. 2016: 10; 329-337.

ZHAO, S.; HUANG, Y.; WANG, C.; HUANG, X.; GUO, J. Mullite formation from reaction sintering of ZrSiO4/α-Al2O3 mixtures. Materials Letters. 2003: 57; 1716-1722.

Publicado

2021-12-01

Cómo citar

Camacho, A. L. D., Modolo, R. C. E., Ferreira, V. M., Rocha, F. J. T., & Moraes, C. A. M. (2021). INVESTIGATION OF THE RAW MATERIALS FROM THE PRECISION CASTING PROCESS FOR VIABILITY EVALUATION OF RECYCLING THE GENERATED CERAMIC SHELL WASTE. IX Sustentável, 8(1), 53–65. https://doi.org/10.29183/2447-3073.MIX2022.v8.n1.53-65

Artículos más leídos del mismo autor/a