USE OF CALCIUM CARBONATE SLUDGE AS FILLER IN HOT MIX ASPHALT CONCRETE SLUDGE
UTILIZAÇÃO DE LAMA DE CARBONATO DE CÁLCIO COMO FÍLER EM CONCRETO ASFÁLTICO USINADO A QUENTE
DOI:
https://doi.org/10.29183/2447-3073.MIX2024.v10.n3.35-47Keywords:
Industrial solid waste, Calcium carbonate sludge, Hot mix asphalt concrete, Asphalt pavingAbstract
Using industrial solid waste in the composition of asphalt mixtures can provide economic and environmental gains for the generating sector and civil construction. This work evaluated the feasibility of using calcium carbonate mud as a filler material in producing hot-mix asphalt concrete. The methodology was based on current standards, using a reference trace based on the Marshall dosage to measure the ideal content of petroleum asphalt cement and adding three levels (2%, 3%, and 4%) of calcium carbonate mud to the mixture. The stability and creep parameters results did not show a statistically significant difference despite the increase in resistance (1394.41 kgf) and lower deformation (3.48 mm) using 3% residue compared to the reference mixture. On the other hand, the values for the percentage of voids and the bitumen-void ratio showed statistical differences, reaching values of 5.29% and 69.86%, respectively, with the incorporation of 3% of the mud. It was concluded that there is a possibility of reducing petroleum asphalt cement in the composition of the mixtures and a potential for using this residue as a filler in hot-mix asphalt concrete.
References
AL-BAYATI, H. K. A.; TIGHE, S. L.; ACHEBE, J. Influence of recycled concrete aggregate on volumetric properties of hot mix asphalt. Resources, Conservation and Recycling, v. 130, n. November 2017, p. 200–214, 2018. Disponível em: <https://doi.org/10.1016/j.resconrec.2017.11.027>.
ARABANI, M.; MIRABDOLAZIMI, S. M. Experimental investigation of the fatigue behaviour of asphalt concrete mixtures containing waste iron powder. Materials Science and Engineering: A, v. 528, n. 10–11, p. 3866–3870, 2011. Disponível em: <http://dx.doi.org/10.1016/j.msea.2011.01.099>.
ARABANI, M; TAHAMI, S. A. Assessment of mechanical properties of rice husk ash modified asphalt mixture. Construction and Building Materials, v. 149, p. 350–358, 2017. Disponível em: <http://dx.doi.org/10.1016/j.conbuildmat.2017.05.127>.
ARTUSO, F.; LUKIANTCHUKI, J. A. Evaluation of the self-cemeting effect of Construction and Demotion Waste (CDW) on mechanical performance over time for pavement support layers purpose. Ambiente Construído, v. 19, n. 2, p. 59–77, 2019.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). NBR 16917: Agregado graúdo ― Determinação da densidade e da absorção de água. Associação Brasileira de Normas Técnicas, 2021.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). NBR 10004: Resíduos sólidos – Classificação. [S.l: s.n.]. 2004
BARDINI, V. S. S.; KLINSKY, L. M. G.; FERNANDES, J. L. A importância do fíler para o bom desempenho de misturas asfálticas. Minerva, v. 7, n. 1, p. 71–78, 2010.
BURUBERRI, L. H.; SEABRA, M. P.; LABRINCHA, J. A. Preparation of clinker from paper pulp industry wastes. Journal of Hazardous Materials, v. 286, n. April 2015, p. 252–260, 2015.
COSME, J.; FERNANDES, G.; FERNANDES, D.P. Utilization of ferronickel slag in hot mix asphalt. International Engineering Journal, v. 74, n. 1, p. 19–26, 2021.
DEPARTAMENTO NACIONAL DE ESTRADAS DE RODAGEM (DNER). Agregado miúdo - Determinação da densidade real,1995a.
DEPARTAMENTO NACIONAL DE ESTRADAS DE RODAGEM (DNER). DNER-ME 043: Misturas betuminosas a quente - ensaio Marshall, 1995b.
DEPARTAMENTO NACIONAL DE INFRAESTRUTURA DE TRANSPORTES (DNIT). DNIT 031: Pavimentos flexíveis - Concreto asfáltico - Especificação de serviço, 2006.
DEPARTAMENTO NACIONAL DE INFRAESTRUTURA DE TRANSPORTES (DNIT). DNIT 428: Pavimentação – Misturas asfálticas – Determinação da densidade relativa aparente e da massa específica aparente de corpos de prova compactados – Método de ensaio, 2020.
DEPARTAMENTO NACIONAL DE INFRAESTRUTURA DE TRANSPORTES (DNIT). Pavimentação asfáltica - Preparação de corpos de prova para ensaios mecânicos usando o compactador giratório Superpave ou o Marshall – Procedimento, 2018.
DEVULAPALLI, L.; KOTHANDARAMAN, S. K.; SARANG, G. A review on the mechanisms involved in reclaimed asphalt pavement. International Journal of Pavement Research and Technology, v. 12, n. 2, p. 185–196, 2019.
DULAIMI, A.; SHANBARA, H. K.; JAFER, H.; SADIQUE, M. An evaluation of the performance of hot mix asphalt containing calcium carbide residue as a filler. Construction and Building Materials, v. 261, p. 119918, 2020. Disponível em: <https://doi.org/10.1016/j.conbuildmat.2020.119918>.
DYER, P. P. O. L.; DE LIMA, M. G. Waste foundry sand in hot mix asphalt: A review. Construction and Building Materials, v. 359, n. September, p. 129342, 2022. Disponível em: <https://doi.org/10.1016/j.conbuildmat.2022.129342>.
FACHIN, R. T.; RIBEIRO, F. R. C.; PACHECO, F.; BREHM, F. A.; MODOLO, R. C. E. Valorização da lama do beneficiamento de rochas ornamentais em pavimentos flexíveis. Research, Society and Development, v. 11, n. 1, p. e58711125404, 2022.
HAQ, I.; RAJ, A. Bioremediation of Industrial Waste for Environmental Safety. Bioremediation of Industrial Waste for Environmental Safety, n. January, 2020.
HASAN, M.; AL BIRUNI, M. T.; AFIA, A.; AHMED, T. Utilization of sludge from water treatment plant as a filler material in pavements. Journal of Material Cycles and Waste Management, v. 24, n. 6, p. 2656–2668, 2022. Disponível em: <https://doi.org/10.1007/s10163-022-01505-7>.
IBÁ. Estatísticas da Indústria Brasileira de Árvores - 4o Trimestre de 2022, 2022.
INYIM, P.; PEREYRA, J.; BIENVENU, M.; MOSTAFAVI, A. Environmental assessment of pavement infrastructure: A systematic review. Journal of Environmental Management, v. 176, p. 128–138, 2016. Disponível em: <http://dx.doi.org/10.1016/j.jenvman.2016.03.042>.
KHASAWNEH, M. A.; ALSHEYAB, M. A. Effect of nominal maximum aggregate size and aggregate gradation on the surface frictional properties of hot mix asphalt mixtures. Construction and Building Materials, v. 244, p. 118355, 2020. Disponível em: <https://doi.org/10.1016/j.conbuildmat.2020.118355>.
KÖFTECI, S.; AHMEDZADE, P.; KULTAYEV, B. Performance evaluation of bitumen modified by various types of waste plastics. Construction and Building Materials, v. 73, p. 592–602, 2014.
LE, V. P. Performance of asphalt binder containing sugarcane waste molasses in hot mix asphalt. Case Studies in Construction Materials, v. 15, n. March, p. e00595, 2021. Disponível em: <https://doi.org/10.1016/j.cscm.2021.e00595>.
LIMA, C. E. DE; AMORIM, E. F.; OLIVEIRA, H. DA S.; MOURA, L. F. DE. Concreto asfáltico a quente dosado com resíduos de construção e demolição (RCD) aplicado em pavimento flexível. Holos, v. 1, p. 1–18, 2021.
LINS, V. DE F. C. Reciclagem e a engenharia de superfícies. Revista Materia, v. 24, n. 4, p. 10–12, 2019.
MELOTTI, R.; SANTAGATA, E.; BASSANI, M.; SALVO, M.; RIZZO, S. A preliminary investigation into the physical and chemical properties of biomass ashes used as aggregate fillers for bituminous mixtures. Waste Management, v. 33, n. 9, p. 1906–1917, 2013. Disponível em: <http://dx.doi.org/10.1016/j.wasman.2013.05.015>.
MILAK, G. B.; NAZARIO, B. I.; INNOCENTINI, M. D. M.; RAUPP-PEREIRA, F.; MONTEDO, O. R. K. Efeito da temperatura de sinterização e da adição de fibras poliméricas em cerâmica porosa obtida a partir de resíduos do processo Kraft. Cerâmica, v. 65, n. 375, p. 416–425, 2019.
MODARRES, A.; RAHMANZADEH, M.; AYAR, P. Effect of coal waste powder in hot mix asphalt compared to conventional fillers: Mix mechanical properties and environmental impacts. Journal of Cleaner Production, v. 91, p. 262–268, 2015. Disponível em: <http://dx.doi.org/10.1016/j.jclepro.2014.11.078>.
MODOLO, R. C. E.; SENFF, L.; LABRINCHA, J. A.; FERREIRA, V. M.; TARELHO, L. A. C. Lime mud from cellulose industry as raw material in cement mortars. Materiales de Construccion, v. 64, n. 316, p. 1–9, 2014.
MODOLO, R.; BENTA, A.; FERREIRA, V. M.; MACHADO, L. M. Pulp and paper plant wastes valorisation in bituminous mixes. Waste Management, v. 30, n. 4, p. 685–696, 2010. Disponível em: <http://dx.doi.org/10.1016/j.wasman.2009.11.005>.
OLIVEIRA, R. W. H.; FERNANDES, G.; SOUSA, F. C.; BARRETO, R. A. Chemical and mineralogical characterization of silicon manganese iron slag as railway ballast. International Engineering Journal, v. 70, n. 4, p. 385–391, 2017. Disponível em: <https://doi.org/10.1036/1097?8542.138500 (https://doi.org/10.1036/1097?8542.138500)>.
PASANDÍN, A. R.; PÉREZ, I. Fatigue performance of bituminous mixtures made with recycled concrete aggregates and waste tire rubber. Construction and Building Materials, v. 157, p. 26–33, 2017.
PASANDÍN, A. R.; PÉREZ, I.; RAMÍREZ, A.; CANO, M. M. Moisture damage resistance of hot-mix asphalt made with paper industry wastes as filler. Journal of Cleaner Production, v. 112, p. 853–862, 2016.
PEREIRA, A. G.; LACERDA, B. M.; MODOLO, R. C. E. Laboraty assessment of hot asphalt mixture produced with commercial graphite. Mix Sustentável, v. 7, n. 3, p. 89–98, 2021.
PINTO, S.; PINTO, I. E. Pavimentação asfática: conceitos fundamentais sobre materiais e revestimentos asfálticos. 1a ed. Rio de Janeiro, 2015.
RIBEIRO, F. R. C.; MODOLO, R. C. E.; KULAKOWSKI, M. P.; BREHM, F. A.; MORAES, C. A. M.; FERREIRA, V. M.; MESQUITA, E. F. T.; DE AZEVEDO, A. R. G.; MONTEIRO, S. N. Production of belite based clinker from ornamental stone processing sludge and calcium carbonate sludge with lower CO2 emissions. Materials, v. 15, n. 7, 2022.
SHAFABAKHSH, G. H.; SAJED, Y. Investigation of dynamic behavior of hot mix asphalt containing waste materials; case study: Glass cullet. Case Studies in Construction Materials, v. 1, p. 96–103, 2014. Disponível em: <http://dx.doi.org/10.1016/j.cscm.2014.05.002>.
SHISHEHBORAN, M.; ZIARI, H.; HABIBNEJAD KORAYEM, A.; HAJILOO, M. Environmental and mechanical impacts of waste incinerated acidic sludge ash as filler in hot mix asphalt. Case Studies in Construction Materials, v. 14, p. e00504, 2021. Disponível em: <https://doi.org/10.1016/j.cscm.2021.e00504>.
SILVESTRE, R.; MEDEL, E.; GARCÍA, A.; NAVAS, J. Using ceramic wastes from tile industry as a partial substitute of natural aggregates in hot mix asphalt binder courses. Construction and Building Materials, v. 45, p. 115–122, 2013.
SIMÃO, L.; JIUSTI, J.; LÓH, N. J.; HOTZA, D.; RAUPP-PEREIRA, F.; LABRICHA, J. A.; MONTEDO, O. R. K. Waste-containing clinkers: Valorization of alternative mineral sources from pulp and paper mills. Process Safety and Environmental Protection, v. 109, p. 106–116, 2017. Disponível em: <http://dx.doi.org/10.1016/j.psep.2017.03.038>.
SOUZA, G. M. DE; AMORIM, E. F.; ANJOS, M. A. S. DOS; FRANÇA, F. A. N. DE. Estudo de misturas compostas por resíduos de scheelita e solos destinados a pavimentação. Ambiente Construído, v. 23, n. 3, p. 117–137, 2023.
TAHMOORIAN, F.; SAMALI, B. Laboratory investigations on the utilization of RCA in asphalt mixtures. International Journal of Pavement Research and Technology, v. 11, n. 6, p. 627–638, 2018. Disponível em: <https://doi.org/10.1016/j.ijprt.2018.05.002>.
UZUN, S.; TERZI, S. Evaluation of andesite waste as mineral filler in asphaltic concrete mixture. Construction and Building Materials, v. 31, p. 284–288, 2012.
ZHANG, J.; SUN, C.; LI, P.; LIANG, M.; JIANG, H.; YAO, Z. Experimental study on rheological properties and moisture susceptibility of asphalt mastic containing red mud waste as a filler substitute. Construction and Building Materials, v. 211, p. 159–166, 2019. Disponível em: <https://doi.org/10.1016/j.conbuildmat.2019.03.252>.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Kidner Angelino Próspero, Francisco Roger Carneiro Ribeiro, Carlos Alberto Mendes Moraes, Regina Célia Espinosa Modolo
This work is licensed under a Creative Commons Attribution 4.0 International License.
Creative Commons Copyright Notice
Attribution 4.0 International