SUSTAINABLE BIOPOLYMER TREATMENTS IN CEMENTITIOUS
TRATAMENTOS BIOPOLIMÉRICOS SUSTENTÁVEIS
DOI:
https://doi.org/10.29183/2447-3073.MIX2025.v11.n3.130-149Keywords:
Cementitious biocomposites, Exploratory review, Lignocellulosic fibers, Systematic review, TreatmentsAbstract
Motivated by sustainability, this study is part of Oliveira's doctoral thesis (2025), which developed a biotreatment for cementitious composites reinforced with Amazonian mallow fiber. Therefore, the present study aimed at combining exploratory and systematic review methods to justify the knowledge gap and emerging themes concerning biopolymeric treatments in cementitious biocomposites. The results show that treated mallow fibers improve the mechanical properties and durability of cementitious biocomposites. However, the degradation of fibers in the matrix and the environmental impacts of the treatments used are not sustainable, with few studies on surface treatments using biopolymers. The study concludes that the integration of exploratory and systematic reviews provided a hybrid approach, essential for defining the research. The results indicate that biopolymers, such as natural rubber latex and bacterial nanocellulose, represent eco-efficient opportunities for surface treatments with potential application on the surface of natural fibers used as reinforcement in cementitious matrices.
References
ABRAHAM, E.; ELBI, P. A.; DEEPA, B.; JYOTISHKUMAR, P.; POTHEN, L. A.; NARINE, S. S.; THOMAS, S. X-ray diffraction and biodegradation analysis of green composites of natural rubber/nanocellulose. Polymer Degradation and Stability, v. 97, n. 11, p. 2378–2387, 2012. DOI: 10.1016/j.polymdegradstab.2012.07.028.
AHMAD, H.; CHHIPI-SHRESTHA, G.; HEWAGE, K.; SADIQ, R. A comprehensive review on construction applications and life cycle sustainability of natural fiber biocomposites. Sustainability, v. 14, n. 23, p. 15905, 2022. DOI: 10.3390/su142315905.
ANKUR, N.; SINGH, N. Performance of cement mortars and concretes containing coal bottom ash: A comprehensive review. Renewable and Sustainable Energy Reviews, v. 149, p. 111361, 2021. DOI: 10.1016/j.rser.2021.111361.
BALEA, A.; FUENTE, E.; MONTE, M. C.; BLANCO, A.; NEGRO, C. Recycled fibers for sustainable hybrid fiber cement based material: A review. Materials, v. 14, n. 9, 2021. DOI: 10.3390/ma14092408.
BALLESTEROS, J. E. M.; DOS SANTOS, V.; MÁRMOL, G.; FRÍAS, M.; FIORELLI, J. Potential of the hornification treatment on eucalyptus and pine fibers for fiber-cement applications. Cellulose, v. 24, n. 5, p. 2275–2286, 2017. DOI: 10.1007/s10570-017-1253-6.
BATISTA DOS SANTOS, G. Z.; CALDAS, L. R.; FILHO, J. A. M.; RAFAEL, S. I. M.; DA SILVA, N. M. Environmental performance of a cement composite reinforced with vegetable fibers cultivated in the Brazilian Amazon. Cleaner and Circular Bioeconomy, v. 3, p. 100034, 2022. DOI: 10.1016/j.clcb.2022.100034.
BISMARCK, A.; MISHRA, S.; LAMPKE, T.; MOHANTY, A. K.; MISRA, M.; DRZAL, L. T. Natural Fibers, Biopolymers, and Biocomposites. Boca Raton: CRC Press, 2005. DOI: 10.1201/9780203508206.
BOHUCHVAL, M.; SONEBI, M.; AMZIANE, S.; PERROT, A. Effect of metakaolin and natural fibres on three-dimensional printing mortar. Proceedings of the Institution of Civil Engineers - Construction Materials, v. 174, n. 3, p. 115–128, 2021. DOI: 10.1680/jcoma.20.00009.
CARBONARI, L. T.; ILHA LIBRELOTTO, L. Revisão sistemática da literatura para cenários de desastre. MIX Sustentável, v. 8, n. 5, p. 119–132, 2022. DOI: 10.29183/2447-3073.MIX2022.v8.n5.119-132.
CARVALHO MACHADO, P. J.; FERREIRA, R. A. R.; APARECIDA DE CASTRO MOTTA, L. Study of the effect of silica fume and latex dosages in cementitious composites reinforced with cellulose fibers. Journal of Building Engineering, v. 31, p. 101442, 2020. DOI: 10.1016/j.jobe.2020.101442.
CHERIAN, S.; RYU, S. B.; CORNISH, K. Natural rubber biosynthesis in plants, the rubber transferase complex, and metabolic engineering progress and prospects. Plant Biotechnology Journal, v. 17, n. 11, p. 2041–2061, 2019. DOI: 10.1111/pbi.13181.
CORREIA, V. C.; SANTOS, S. F.; SAVASTANO JR, H.; JOHN, V. M. Utilization of vegetable fibers for production of reinforced cementitious materials. RILEM Technical Letters, v. 2, p. 145–154, 2018. DOI: 10.21809/rilemtechlett.2017.48.
CUNHA, V. R. Produção e caracterização de impermeabilizante a base da resina de breu branco da Amazônia. Dissertação (Mestrado em Engenharia Civil) – Universidade Federal do Amazonas, 2020.
DE AZEVEDO, A. R. G.; MARVILA, M. T.; TAYEH, B. A.; CECCHIN, D.; PEREIRA, A. C.; MONTEIRO, S. N. Technological performance of açaí natural fibre reinforced cement-based mortars. Journal of Building Engineering, v. 33, p. 101675, 2021. DOI: 10.1016/j.jobe.2020.101675.
DE BRITO, J.; KURDA, R. The past and future of sustainable concrete: A critical review and new strategies on cement-based materials. Journal of Cleaner Production, v. 281, 2021. DOI: 10.1016/j.jclepro.2020.123558.
DIAMANTI, M. V.; TEDESCHI, C.; TACCIA, M.; TORRI, G.; MASSIRONI, N.; TOGNOLI, C.; VISMARA, E. Suspended multifunctional nanocellulose as additive for mortars. Nanomaterials, v. 12, n. 7, p. 1093, 2022. DOI: 10.3390/nano12071093.
DOS SANTOS, V.; TONOLI, G. H. D.; MÁRMOL, G.; SAVASTANO, H. Fiber-cement composites hydrated with carbonated water: Effect on physical-mechanical properties. Cement and Concrete Research, v. 124, p. 105812, 2019. DOI: 10.1016/j.cemconres.2019.105812.
FERENHOF, H. A.; FERNANDES, R. F. Desmistificando a revisão de literatura como base para redação científica: método SSF. Revista ACB, v. 21, p. 550, 2016. DOI: 10.20873/uft.2447-4266.2017v3n3p327.
FERRARA, G.; COPPOLA, B.; DI MAIO, L.; MARTINELLI, E. Physical and mechanical characterization of natural fibres and fabrics as reinforcement for composite systems. In: 9th International Conference on Fibre-Reinforced Polymer Composites in Civil Engineering (CICE 2018), Paris, 2018. p. 250–257.
FERRARA, L. High performance fibre reinforced cementitious composites: Six memos for the XXI century societal and economical challenges of civil engineering. Case Studies in Construction Materials, v. 10, p. e00219, 2019. DOI: 10.1016/j.cscm.2019.e00219.
FERREIRA, S. R.; SILVA, F. A.; LIMA, P. R. L.; TOLEDO FILHO, R. D. Effect of hornification on the structure, tensile behavior and fiber matrix bond of sisal, jute and curauá fiber cement based composite systems. Construction and Building Materials, v. 139, p. 551–561, 2017. DOI: 10.1016/j.conbuildmat.2016.10.004.
GONÇALVES, J.; EL-BAKKARI, M.; BOLUK, Y.; BINDIGANAVILE, V. Cellulose nanofibres (CNF) for sulphate resistance in cement based systems. Cement and Concrete Composites, v. 99, p. 100–111, 2019. DOI: 10.1016/j.cemconcomp.2019.03.005.
HISSEINE, O. A.; WILSON, W.; SORELLI, L.; TOLNAI, B.; TAGNIT-HAMOU, A. Nanocellulose for improved concrete performance: A macro-to-micro investigation for disclosing the effects of cellulose filaments on strength of cement systems. Construction and Building Materials, v. 206, p. 84–96, 2019. DOI: 10.1016/j.conbuildmat.2019.02.042.
KUMAR, M.; SINGH, N. P.; SINGH, S. K.; SINGH, N. B. Tertiary biocomposite cement and its hydration. Construction and Building Materials, v. 29, p. 1–6, 2012. DOI: 10.1016/j.conbuildmat.2011.09.017.
LIMA, P. R. L.; BARROS, J. A. O.; ROQUE, A. B.; FONTES, C. M. A.; LIMA, J. M. F. Short sisal fiber reinforced recycled concrete block for one-way precast concrete slabs. Construction and Building Materials, v. 187, p. 620–634, 2018. DOI: 10.1016/j.conbuildmat.2018.07.184.
MANU, T.; NAZMI, A. R.; SHAHRI, B.; EMERSON, N.; HUBER, T. Biocomposites: A review of materials and perception. Materials Today Communications, v. 31, p. 103308, 2022. DOI: 10.1016/j.mtcomm.2022.103308.
MARGEM, J. I.; GOMES, V. A.; MARGEM, F. M.; RIBEIRO, C. G. D.; BRAGA, F. O.; MONTEIRO, S. N. Flexural behavior of epoxy matrix composites reinforced with malva fiber. Materials Research, v. 18, suppl. 2, p. 114–120, 2015. DOI: 10.1590/1516-1439.359514.
MARGEM, J. I.; MARGEM, F. M.; MARGEM, M. R.; GOMES, V. A.; MONTEIRO, S. N. Charpy impact tests in epoxy matrix composites reinforced with malva fibers. In: TMS 2014 Supplemental Proceedings: 143rd TMS Annual Meeting & Exhibition, San Diego, 2014. p. 425–432. DOI: 10.1002/9781118889642.ch55.
MEDEIROS, I. L.; VIEIRA, A.; BRAVIANO, G.; GONÇALVES, B. S. Revisão sistemática e bibliometria facilitadas por um Canvas para visualização de informação. InfoDesign - Revista Brasileira de Design da Informação, v. 12, n. 1, p. 93–110, 2015. DOI: 10.51358/id.v12i1.341.
MOHAMMAD, A. A.; BAGHERPOUR, R.; KALHORI, H. Application of bacterial nanocellulose fibers as reinforcement in cement composites. Construction and Building Materials, v. 241, p. 118061, 2020. DOI: 10.1016/j.conbuildmat.2020.118061.
MOHAMMADKAZEMI, F.; AGUIAR, R.; CORDEIRO, N. Improvement of bagasse fiber–cement composites by addition of bacterial nanocellulose: An inverse gas chromatography study. Cellulose, v. 24, n. 4, p. 1803–1814, 2017. DOI: 10.1007/s10570-017-1210-4.
NASIR, M.; AZIZ, M. A.; ZUBAIR, M.; MANZAR, M. S.; ASHRAF, N.; MU’AZU, N. D.; AL-HARTHI, M. A. Recent review on synthesis, evaluation, and SWOT analysis of nanostructured cellulose in construction applications. Journal of Building Engineering, v. 46, p. 103747, 2022. DOI: 10.1016/j.jobe.2021.103747.
NORONHA, D. P. Análise das citações das dissertações de mestrado e teses de doutorado em saúde pública (1990–1994): estudo exploratório. Ciência da Informação, v. 27, n. 1, p. 66–75, 1998. DOI: 10.1590/S0100-19651998000100009.
OIKAWA, F. F. Estudo da caracterização mecânica de flexão em compósitos cimentícios reforçados com fibras de malva. Dissertação (Mestrado em Engenharia Civil) – Universidade Federal do Amazonas, 2019.
OLAWUMI, T. O.; CHAN, D. W. M. A scientometric review of global research on sustainability and sustainable development. Journal of Cleaner Production, v. 183, p. 231–250, 2018. DOI: 10.1016/j.jclepro.2018.02.162.
OLIVEIRA, I. R. C. Propriedades mecânicas, físicas e químicas de compósitos cimentícios reforçados com fibras longas de juta e de malva. Dissertação (Mestrado em Engenharia Civil) – Universidade Federal do Amazonas, 2013.
OLIVEIRA, I. R. C.; VASCONCELOS, R. P.; FILHO, J. A. M.; TORALLES, B. M. Comportamento à tração direta de biocompósitos cimentícios reforçados com fibras da região amazônica. MIX Sustentável, v. 8, n. 5, p. 29–39, 2022. DOI: 10.29183/2447-3073.MIX2022.v8.n5.29-39.
OLIVEIRA, I. R. C. Desenvolvimento em um biotratamento para aplicação em compósitos cimentícios reforçados com fibra de malva amazônica. Tese – Universidade Estadual de Londrina, 2025.
PAGE, M. J.; MCKENZIE, J. E.; BOSSUYT, P. M.; BOUTRON, I.; HOFFMANN, T. C.; MULROW, C. D.; SHAMSEER, L.; TETZLAFF, J. M.; AKL, E. A.; BRENNAN, S. E.; CHOU, R.; GLANVILLE, J.; GRIMSHAW, J. M.; HRÓBJARTSSON, A.; LALU, M. M.; LI, T.; LODER, E. W.; MAYO-WILSON, E.; MCDONALD, S.; MOHER, D. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. The BMJ, v. 372, 2021. DOI: 10.1136/bmj.n71.
PEREIRA, J. P.; LEAL, A. C.; RAMOS, A. L. M. Evaluation of rubber tree clones under different tapping systems in Northwestern Paraná State, Brazil. Brazilian Archives of Biology and Technology, v. 61, 2018. DOI: 10.1590/1678-4324-2018160232.
REIXACH, R.; CLARAMUNT, J.; CHAMORRO, M. À.; LLORENS, J.; PARETA, M. M.; TARRÉS, Q.; MUTJÉ, P.; DELGADO-AGUILAR, M. On the path to a new generation of cement-based composites through the use of lignocellulosic micro/nanofibers. Materials, v. 12, n. 10, p. 1584, 2019. DOI: 10.3390/ma12101584.
SAVASTANO, H.; AGOPYAN, V. Transition zone studies of vegetable fibre–cement paste composites. Cement and Concrete Composites, v. 21, n. 1, p. 49–57, 1999. DOI: 10.1016/S0958-9465(98)00038-9.
SAVASTANO JR, H. Materiais à base de cimento reforçado com fibra vegetal: reciclagem de resíduos para a construção de baixo custo. Tese (Doutorado em Engenharia) – Universidade de São Paulo, 2000. DOI: 10.11606/T.3.2007.tde-08102007-155734.
SERRA-PARAREDA, F.; AGUADO, R.; TARRÉS, Q.; MUTJÉ, P.; DELGADO-AGUILAR, M. Chemical-free production of lignocellulosic micro- and nanofibers from high-yield pulps: Synergies, performance, and feasibility. Journal of Cleaner Production, v. 313, p. 127914, 2021. DOI: 10.1016/j.jclepro.2021.127914.
SILVA, E. J.; MARQUES, M. L.; VELASCO, F. G.; FORNARI JR, C.; LUZARDO, F. M.; TASHIMA, M. M. A new treatment for coconut fibers to improve the properties of cement-based composites – combined effect of natural latex/pozzolanic materials. Sustainable Materials and Technologies, v. 12, p. 44–51, 2017. DOI: 10.1016/j.susmat.2017.04.003.
SILVA, E. J.; VELASCO, F. G.; LUZARDO, F. M.; MARQUES, M. L.; MILIAN, F. M.; RODRIGUES, L. B. Compósito cimentício com elevado teor de fibra de coco tratada: propriedades físicas e durabilidade. Matéria, v. 23, n. 3, 2018. DOI: 10.1590/s1517-707620180003.0499.
SILVA, M. J.; CLARO, P. I. C.; DA SILVA, J. C.; SCALOPPI JR, E. J.; DE SOUZA GONÇALVES, P.; MARTINS, M. A.; MATTOSO, L. H. C. Evaluation of the physicochemical properties of natural rubber from Hevea brasiliensis clones. Industrial Crops and Products, v. 171, p. 113925, 2021. DOI: 10.1016/j.indcrop.2021.113925.
SOLTAN, D. G.; DAS NEVES, P.; OLVERA, A.; SAVASTANO JR, H.; LI, V. C. Introducing a curaua fiber reinforced cement-based composite with strain-hardening behavior. Industrial Crops and Products, v. 103, p. 1–12, 2017. DOI: 10.1016/j.indcrop.2017.03.016.
TEIXEIRA, J. N.; SILVA, D. W.; VILELA, A. P.; SAVASTANO JR, H.; DE SIQUEIRA BRANDÃO VAZ, L. E. V.; MENDES, R. F. Lignocellulosic materials for fiber cement production. Waste and Biomass Valorization, v. 11, n. 5, p. 2193–2200, 2020. DOI: 10.1007/s12649-018-0536-y.
TEIXEIRA, R. S.; SANTOS, S. F.; CHRISTOFORO, A. L.; PAYÁ, J.; SAVASTANO, H.; LAHR, F. A. R. Impact of content and length of curauá fibers on mechanical behavior of extruded cementitious composites: Analysis of variance. Cement and Concrete Composites, v. 102, p. 134–144, 2019. DOI: 10.1016/j.cemconcomp.2019.04.022.
TEIXEIRA, R. S.; TONOLI, G. H. D.; SANTOS, S. F.; SAVASTANO, H.; PROTÁSIO, T. P.; TORO, E. F.; MALDONADO, J.; LAHR, F. A. R.; DELVASTO, S. Different ageing conditions on cementitious roofing tiles reinforced with alternative vegetable and synthetic fibres. Materials and Structures, v. 47, n. 3, p. 433–446, 2014. DOI: 10.1617/s11527-013-0070-0.
TOMCZAK, F.; SATYANARAYANA, K. G.; SYDENSTRICKER, T. H. D. Studies on lignocellulosic fibers of Brazil: Part III – Morphology and properties of Brazilian curauá fibers. Composites Part A: Applied Science and Manufacturing, v. 38, n. 10, p. 2227–2236, 2007. DOI: 10.1016/j.compositesa.2007.06.005.
VANTADORI, S.; CARPINTERI, A.; ZANICHELLI, A. Lightweight construction materials: Mortar reinforced with date-palm mesh fibres. Theoretical and Applied Fracture Mechanics, v. 100, p. 39–45, 2019. DOI: 10.1016/j.tafmec.2018.12.011.
WICHAITA, W.; PROMLOK, D.; SUDJAIPRAPARAT, N.; SRIPRAPHOT, S.; SUTEEWONG, T.; TANGBORIBOONRAT, P. A concise review on design and control of structured natural rubber latex particles as engineering nanocomposites. European Polymer Journal, v. 159, p. 110740, 2021. DOI: 10.1016/j.eurpolymj.2021.110740.
ZINI, E.; SCANDOLA, M. Green composites: An overview. Polymer Composites, v. 32, n. 12, p. 1905–1915, 2011. DOI: 10.1002/pc.21224.
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Igor Roberto Cabral Oliveira, Luana Toralles Carbonari, Berenice Martins Toralles

This work is licensed under a Creative Commons Attribution 4.0 International License.
Creative Commons Copyright Notice
Attribution 4.0 International