USO DE ESCORIA DE HORNO DE ARCO ELÉCTRICO EN LA ACELERACIÓN DE LA CARBONATACIÓN
USE OF ELECTRIC ARC FURNACE STEELMAKING SLAG IN ACCELERATED CARBONATION
DOI:
https://doi.org/10.29183/2447-3073.MIX2025.v11.n2.165-175Palabras clave:
Carbonatación acelerada; Escoria de acería de horno eléctrico de arco; Secuestro de carbonoResumen
La valorización de los residuos industriales en la industria siderúrgica es de gran interés dentro del modelo de economía circular y en la idealización de estrategias para el secuestro de carbono. Actualmente, debido a políticas sostenibles, aumenta el número de plantas de procesos industriales en fábricas de acero, donde se realiza el cambio del sistema de fabricación de acero mediante hornos de oxígeno básico (HOB) por hornos eléctricos de arco (HEA). En comparación con el HOB, el HEA tiene la ventaja de utilizar una fuente de energía renovable y reutilizar chatarra para la producción de acero, reduciendo así la emisión de gases contaminantes. El proceso con HEA genera subproductos, como la escoria, cuya composición química difiere de los residuos del proceso HOB, lo que limita su uso en aplicaciones convencionales en la construcción, como en obras de infraestructura o como aditivo en el cemento. El proceso de carbonatación acelerada permite que las reacciones entre el CO2 y los óxidos presentes en la escoria de acería HEA ocurran en menos tiempo en el reactor, logrando un aumento significativo en la resistencia a la compresión y la estabilidad química de las muestras, en comparación con la carbonatación del material en condiciones atmosféricas.
Referencias
AMIN, M. S.; EL-GAMAL, S. M. A.; ABO-EL-ENEIN, S. A.; EL-HOSINY, F. I.; RAMADAN, M. Physico-chemical characteristics of blended cement pastes containing electric arc furnace slag with and without silica fume. HBRC Journal, v. 11, n. 3, p. 321–327, 2015. https://www.tandfonline.com/doi/full/10.1016/j.hbrcj.2014.07.002.
ANDRADE, H. D. Carbonatação em concreto de escória de aciaria. 2018. 64 f. Master's in Civil Engineering - Escola de Minas, Universidade Federal de Ouro Preto, Ouro Preto, 2018. Acesso em: 6 dec. 2023. https://www.repositorio.ufop.br/items/cb9e5ea6-b2a9-4e08-96d1-a9e4af909cb5.
ARRIBAS, I.; SANTAMARÍA, A.; RUIZ, E.; ORTEGA-LÓPEZ, V.; MANSO, J. M. Electric arc furnace slag and its use in hydraulic concrete. Construction and Building Materials, v. 90, p. 68–79, 15 ago. 2015. https://doi.org/10.1016/j.conbuildmat.2015.05.003.
BIAVA, G.; ZACCO, A.; ZANOLETTI, A.; SORRENTINO, G. P.; CAPONE, C.; PRINCIGALLO, A.; DEPERO, L. E.; BONTEMPI, E. Accelerated Direct Carbonation of Steel Slag and Cement Kiln Dust: An Industrial Symbiosis Strategy Applied in the Bergamo–Brescia Area. Materials, v. 16, n. 11, p. 4055, 1 jun. 2023. https://doi.org/10.3390/ma16114055.
CÁRDENAS BALAGUERA, C. A.; GÓMEZ BOTERO, M. A. Characterization of steel slag for the production of chemically bonded phosphate ceramics (CBPC). Construction and Building Materials, v. 241, p. 118138, 30 abr. 2020. https://doi.org/10.1016/j.conbuildmat.2020.118138.
CHANG, J.; GU, Y.; ANSARI, W. S. Mechanism of blended steel slag mortar with CO2 curing exposed to sulfate attack. Construction and Building Materials, v. 251, p. 118880, 2020. https://doi.org/10.1016/j.conbuildmat.2020.118880.
DRI, T. (2023). Accelerated carbonation: an innovative method for carbon dioxide sequestration from alkaline solid wastes. https://thesis.unipd.it/handle/20.500.12608/48526.
EUROFER. What is steel and how is steel made? 2020. Available at: < https://www.eurofer.eu/about-steel/learn-about-steel/where-is-steel-made-in-europe>.
EUROFER. Where is steel made in Europe? 2023. Available at: < https://www.eurofer.eu/about-steel/learn-about-steel/what-is-steel-and-how-is-steel-made>.
FLORÉN, H.; FRISHAMMAR, J.; LÖF, A.; ERICSSON, M. Raw materials management in iron and steelmaking firms. Mineral Economics, v. 32, n. 1, p. 39–47, 5 abr. 2019. https://link.springer.com/article/10.1007/s13563-018-0158-7.
FRANCO, L.C.; MENDES, J.C.; COSTA, L.C.B.; Pira, R.R.; PEIXOTO, R.A.F. Design and thermal evaluation of a social housing model conceived with bioclimatic principles and recycled aggregates. Sustainable Cities and Society, v. 51, p. 101725, 2019. https://www.sciencedirect.com/science/article/pii/S2210670719309564.
INSTITUTO AÇO BRAZIL - IAB. Relatório de Sustentabilidade: 2020. Available at: 2020. Acesso em: 9 nov. 2023. INSTITUTO AÇO BRAZIL - IAB. Processo Siderúrgico. https://www.acobrasil.org.br/site/processo-siderurgico/.
KAVUSSI, Amir; QAZIZADEH, Morteza Jalili. Fatigue characterization of asphalt mixes containing electric arc furnace (EAF) steel slag subjected to long term aging. Construction and Building Materials, v. 72, p. 158–166, 2014. https://doi.org/10.1016/j.conbuildmat.2014.08.052.
KO, Ming-Sheng; CHEN, Ying-Liang; JIANG, Jhih-Hua. Accelerated carbonation of basic oxygen furnace slag and the effects on its mechanical properties. Construction & building materials, OXFORD, v. 98, p. 286–293, 2015. https://doi.org/10.1016/j.conbuildmat.2015.08.051.
LAM, My Ngoc Tra; JARITNGAM, Saravut; LE, Duc Hien. Roller-compacted concrete pavement made of Electric Arc Furnace slag aggregate: Mix design and mechanical properties. Construction and Building Materials, v. 154, p. 482–495, 2017. https://doi.org/10.1016/j.conbuildmat.2017.07.240.
LEE, Han Seung; LIM, Hee Seob; ISMAIL, Mohamed A. Quantitative evaluation of free CaO in electric furnace slag using the ethylene glycol method. Construction and Building Materials, v. 131, p. 676–681, 2017. https://doi.org/10.1016/j.conbuildmat.2016.11.047.
Li, L., & WU, M. (2022). An overview of utilizing CO2 for accelerated carbonation treatment in the concrete industry. Journal of CO2 Utilization, 60, 102000. https://doi.org/10.1016/J.JCOU.2022.102000.
Li, L.; Jiang, Y.; Pan, S.; Ling, T. Comparative life cycle assessment to maximize CO2 sequestration of steel slag products. Construction and Building Materials, v. 298, p. 123876, 2021. https://www.sciencedirect.com/science/article/pii/S0950061821016366.
LI, Lufan; ZHONG, Xinzhuo; LING, Tung-Chai. Effects of accelerated carbonation and high temperatures exposure on the properties of EAFS and BOFS pressed blocks. Journal of Building Engineering, v. 45, p. 103504, 2022. https://doi.org/10.1016/j.jobe.2021.103504.
LIBRANDI, P.; NIELSEN, P.; COSTA, G.; SNELLINGS, R.; QUAGHEBEUR, M.; BACIOCCHI, R. Mechanical and environmental properties of carbonated steel slag compacts as a function of mineralogy and CO2 uptake. Journal of CO2 Utilization, v. 33, p. 201–214, 1 out. 2019. https://doi.org/10.1016/j.jcou.2019.05.028.
LIU, P.; ZHONG, J.; ZHANG, M.; MO, L.; DENG, M. Effect of CO2 treatment on the microstructure and properties of steel slag supplementary cementitous materials. Construction & building materials, v. 309, p. 125171, 2021. https://doi.org/10.1016/j.conbuildmat.2021.125171.
MARTINS, A. C. P.; FRANCO DE CARVALHO, J. M.; COSTA, L. C. B.; ANDRADE, H. D.; DE MELO, T. V.; RIBEIRO, J. C. L.; PEDROTI, L. G.; PEIXOTO, R. A. F. Steel slags in cement-based composites: An ultimate review on characterization, applications and performance. Construction and Building Materials, v. 291, p. 123265, 2021. https://doi.org/10.1016/j.conbuildmat.2021.123265.
MASOUDI, Sajjad; ABTAHI, Sayyed Mahdi; GOLI, Ahmad. Evaluation of electric arc furnace steel slag coarse aggregate in warm mix asphalt subjected to long-term aging. Construction and Building Materials, v. 135, p. 260–266, 2017. https://doi.org/10.1016/j.conbuildmat.2016.12.177.
MENAD, N. E.; KANA, N.; SERON, A.; KANARI, N. New EAF Slag Characterization Methodology for Strategic Metal Recovery. Materials, v. 14, n. 6, 2 mar. https://doi.org/10.3390/ma14061513.
MENG, D.; UNLUER, C.; YANG, E.-H.; QIAN, S. Carbon sequestration and utilization in cement-based materials and potential impacts on durability of structural concrete. Construction & building materials, v. 361, p. 129610, 2022. https://doi.org/10.1016/j.conbuildmat.2022.129610.
MERKI, A.; KRASSNIG, H.-J. THE FUTURE OF ELECTRIC STEELMAKING. Available at: https://magazine.primetals.com/2023/02/09/the-future-of-electric-steelmaking/.
MO, L.; HAO, Y.; LIU, Y.; WANG, F.; DENG, M. Preparation of calcium carbonate binders via CO2 activation of magnesium slag. Cement and Concrete Research, v. 121, p. 81–90, 1 jul. 2019. https://doi.org/10.1016/j.cemconres.2019.04.005.
MOMBELLI, D.; MAPELLI, C.; BARELLA, S.; GRUTTADAURIA, A.; LE SAOUT, G.; GARCIA-DIAZ, E. The efficiency of quartz addition on electric arc furnace (EAF) carbon steel slag stability. Journal of Hazardous Materials, v. 279, p. 586–596, 30 ago. 2014. https://doi.org/10.1016/j.jhazmat.2014.07.045.
MOON, Eun-Jin; CHOI, Young Cheol. Carbon dioxide fixation via accelerated carbonation of cement-based materials: Potential for construction materials applications. Construction & building materials, v. 199, p. 676–687, 2019. https://doi.org/10.1016/j.conbuildmat.2018.12.078.
NIKOLIC, I.; CROSSED D SIGNUROVIC, D.; MARKOVIC, S.; VESELINOVIC, L.; JANKOVIC-CASTVAN, I.; RADMILOVIC, V. V.; RADMILOVIC, V. R. Alkali activated slag cement doped with Zn-rich electric arc furnace dust. Journal of Materials Research and Technology, v. 9, n. 6, p. 12783–12794, 1 nov. 2020. https://doi.org/10.1016/j.jmrt.2020.09.024.
OZTURK, M.; BANKIR, M. B.; BOLUKBASI, O. S.; SEVIM, U. K. Alkali activation of electric arc furnace slag: Mechanical properties and micro analyzes. Journal of Building Engineering, v. 21, p. 97–105, 1 jan. 2019. https://doi.org/10.1016/j.jobe.2018.10.005.
PENTEADO, C. S. G.; EVANGELISTA, B. L.; FERREIRA, G. C. dos S.; BORGES, P. H. A.; LINTZ, R. C. C. Use of electric arc furnace slag for producing concrete paving blocks. Ambiente Construído, v. 19, 2019. https://www.scielo.br/j/ac/a/HQyyD9w8HDk6gYMxJB3SMFQ/.
POMARO, B.; GRAMEGNA, F.; CHERUBINI, R.; DE NADAL, V.; SALOMONI, V.; FALESCHINI, F. Gamma-ray shielding properties of heavyweight concrete with Electric Arc Furnace slag as aggregate: An experimental and numerical study. Construction and Building Materials, v. 200, p. 188–197, 2019. https://doi.org/10.1016/j.conbuildmat.2018.12.098 .
PU, Y.; LI, L.; SHI, X.; WANG, Q.; ABOMOHRA, A. Recent advances in accelerated carbonation for improving cement-based materials and CO2 mitigation from a life cycle perspective. Construction and Building Materials, v. 388, p. 131695, 24 jul. 2023. https://doi.org/10.1016/j.conbuildmat.2023.131695.
ROSLAN, N. H.; ISMAIL, M.; KHALID, N. H. A.; MUHAMMAD, B. Properties of concrete containing electric arc furnace steel slag and steel sludge. Journal of Building Engineering, v. 28, p. 101060, 1 mar. 2020. https://doi.org/10.1016/j.jobe.2019.101060.
SANTAMARÍA, A.; ORBE, A.; SAN JOSÉ, J. T.; GONZÁLEZ, J. J. A study on the durability of structural concrete incorporating electric steelmaking slags. Construction and Building Materials, v. 161, p. 94–111, 10 fev. 2018. https://doi.org/10.1016/j.conbuildmat.2017.11.121.
SANTAMARÍA, A.; ORTEGA-LÓPEZ, V.; SKAF, M.; CHICA, J. A.; MANSO, J. M. The study of properties and behavior of self-compacting concrete containing Electric Arc Furnace Slag (EAFS) as aggregate. Ain Shams Engineering Journal, v. 11, n. 1, p. 231–243, 1 mar. https://doi.org/10.1016/j.asej.2019.10.001.
SONG, Q.; GUO, M. Z.; WANG, L.; LING, T. C. Use of steel slag as sustainable construction materials: A review of accelerated carbonation treatment. Resources, Conservation and Recycling, v. 173, p. 105740, 1 out. 2021. https://doi.org/10.1016/j.resconrec.2021.105740.
SRIVASTAVA, S., Snellings, R., & Cool, P. (2021). Clinker-free carbonate-bonded (CFCB) products prepared by accelerated carbonation of steel furnace slags: A parametric overview of the process development. Construction and Building Materials, 303, 124556. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2021.124556.
SRIVASTAVA, S.; SNELLINGS, R.; NIELSEN, P.; COOL, P. Accelerated carbonation of ferrous and non-ferrous slags to produce clinker-free carbonate-bonded blocks: Synergetic reduction in environmental leaching. Construction and Building Materials, v. 348, p. 128630, 19 set. 2022. https://doi.org/10.1016/j.conbuildmat.2022.128630.
TEO, P. Ter; ZAKARIA, S. K.; SALLEH, S. Z.; TAIB, M. A. A.; MOHD SHARIF, N.; ABU SEMAN, A.; MOHAMED, J. J.; YUSOFF, M.; YUSOFF, A. H.; MOHAMAD, M.; MASRI, M. N.; MAMAT, S. Assessment of Electric Arc Furnace (EAF) Steel Slag Waste’s Recycling Options into Value Added Green Products: A Review. Metals, v. 10, n. 10, 2020. https://doi.org/10.3390/met10101347.
WEIDE, Heliton. Avaliação das propriedades macro e microestruturais de ligantes a base de escória ativados por carbonatação acelerada. Master's in Civil Engineering. Universidade Federal de Santa Maria, Santa Maria, Brazil, 2024. https://repositorio.ufsm.br/handle/1/33427.
WORLD STEEL ASSOCIATION - WSA. Steel industry co-products. 2021. Available at: https://worldsteel.org/wp-content/uploads/Fact-sheet-Steel-industry-co-products.pdf.
WORLD STEEL ASSOCIATION - WSA. Sustainability performance of the steel industry 2004-2022. 2023. Available at: https://worldsteel.org/wp-content/uploads/Sustainability-indicators-report-2023.pdf.
YEIH, W.; FU, T. C.; CHANG, J. J.; HUANG, R. Properties of pervious concrete made with air-cooling electric arc furnace slag as aggregates. Construction and Building Materials, v. 93, p. 737–745, 15 set. 2015. https://doi.org/10.1016/j.conbuildmat.2015.05.104.
YI, Y.-R.; LIN, Y.; DU, Y.-C.; BAI, S.; MA, Z.; CHEN, Y. Accelerated carbonation of ladle furnace slag and characterization of its mineral phase. Construction & building materials, v. 276, p. 122235, 2021. https://doi.org/10.1016/j.conbuildmat.2020.122235.
YI, Y.-R.; LIN, Y.; DU, Y.-C.; BAI, S.; MA, Z.; CHEN, Y. Accelerated carbonation of ladle furnace slag and characterization of its mineral phase. Construction & building materials, v. 276, p. 122235, 2021. https://doi.org/10.1016/j.conbuildmat.2020.122235.
YILDIRIM, Irem Zeynep; PREZZI, Monica. Chemical, Mineralogical, and Morphological Properties of Steel Slag. Advances in Civil Engineering, v. 2011, p. 463638, 2011. https://doi.org/10.1155/2011/463638.
ZELEKE, M.; RUDRAPATI, R.; DAMTAW, E.; ASSEGE, Y.; ASRAT, F. A Review on Steel Production and Development of Steel making Technologies. v. 4, p. 13–20, 1 nov. 2018. https://www.researchgate.net/publication/329124559_A_Review_on_Steel_Production_and_Development_of_Steel_making_Technologies.
ZHANG, N.; WU, L.; LIU, X.; ZHANG, Y. Structural characteristics and cementitious behavior of basic oxygen furnace slag mud and electric arc furnace slag. Construction and Building Materials, v. 219, p. 11–18, 20 set. 2019. https://doi.org/10.1016/j.conbuildmat.2019.05.156.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Heliton Weide, André Lübeck, Alexandre Silva de Vargas, Almir Barros Da Silva Santos Neto, Daniel Assumpcao Bertuol

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Aviso de Direito Autoral Creative Commons
1. Política para Periódicos de Acesso Livre
Autores que publicam nesta revista concordam com os seguintes termos:
a. Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
b. Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
c. Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto após o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).