ULTRA-HIGH PERFORMANCE CONCRETES WITH PHENOLIC FOUNDRY SAND: MECHANICAL AND MICROSTRUCTURAL EVALUATION

CONCRETOS DE ULTRA ALTO DESEMPENHO COM AREIA DE FUNDIÇÃO FENÓLICA: AVALIAÇÃO MECÂNICA E MICROESTRUTURAL

Authors

  • Bóris Casanova Sokolovicz Universidade Regional Integrada do Alto Uruguai e das Missões - URI
  • André Lübeck Universidade Federal de Santa Maria - UFSM
  • Geraldo Cechella Isaia Universidade Federal de Santa Maria - UFSM
  • Heliton Weide Universidade Federal de Santa Maria - UFSM

DOI:

https://doi.org/10.29183/2447-3073.MIX2023.v9.n5.183-199

Keywords:

UHPC, Microstructure, Mineral additions, Waste foundry sand

Abstract

In this investigation, the properties of ultra-high-performance concretes (UHPC) produced with different binders and aggregates were analyzed. Ternary and quaternary mixtures were tested, including structural white Portland cement (WPC), silica fume (SF), hydrated lime (HL), rice husk ash (RHA), fly ash (FA), and limestone filler (LF), in combination with industrial sand (IS) and discarded foundry phenolic sand (DFPS).

The mixtures underwent two types of curing: moist curing until the testing age and moist combined with thermal curing. The concretes were evaluated for compressive strength and microstructure using thermogravimetric analysis (TG/DTG) and Fourier transform infrared spectroscopy (FTIR) techniques.

The results showed that all mixtures achieved the desired levels of strength for UHPC (150 MPa). Up to 28 days, the mixtures with RHA exhibited higher strength compared to those with FA, regardless of the curing type. However, at 91 days, the mixtures with FA and thermal curing were more resistant than the mixtures with RHA. Among the quaternary mixtures, at 7 days, the strengths of the mixtures were equivalent, indicating that FA did not react at earlier ages.

Author Biographies

Bóris Casanova Sokolovicz, Universidade Regional Integrada do Alto Uruguai e das Missões - URI

Possui Graduação em Engenharia Civil pela Universidade Federal de Santa Maria (2005), Mestrado em Engenharia Civil pela Universidade Federal de Santa Maria (2013), com ênfase em Construção Civil e Preservação Ambiental, na linha de pesquisa de Materiais de Construção e Doutorado em Engenharia Civil pela Universidade Federal de Santa Maria (2020), com ênfase em Construção Civil e Preservação Ambiental, na linha de pesquisa de concreto de ultra alto desempenho. Atualmente é professor efetivo da Universidade Regional Integrada do Alto Uruguai e das Missões (URI), (Campus Santo Ângelo). Professor líder do Grupo de Estudos e Pesquisas em Materiais e Sistemas (GEPEMASI) da URI. Professor e pesquisador do Laboratório de Solos da URI, cujas pesquisas são com ênfase em Mecânica dos Solos, Melhoramento de Solos, Estabilidade de Taludes, Fundações e Interação Solo Estrutura.

http://lattes.cnpq.br/8038983210001144

ORCID: https://orcid.org/0000-0002-6369-8755

André Lübeck, Universidade Federal de Santa Maria - UFSM

Possui graduação em Engenharia Civil pela Universidade Federal de Santa Maria (2006), mestrado (2008) e doutorado (2016) pela mesma universidade. É professor adjunto no Departamento de Estruturas e Construção Civil da Universidade Federal de Santa Maria.

http://lattes.cnpq.br/7511022637484145

ORCID: https://orcid.org/0000-0001-5772-9933

Geraldo Cechella Isaia, Universidade Federal de Santa Maria - UFSM

Possui graduação em Engenharia Civil pela Universidade Federal do Rio Grande do Sul (1965), mestrado em Engenharia Civil pela Universidade Federal do Rio Grande do Sul (1990) e doutorado em Engenharia Civil pela Universidade de São Paulo (1995). É professor Titular aposentado (em 1995) e como professor Associado (2013) pela Universidade Federal de Santa Maria e professor permanente do Programa de Pós-Graduação em Engenharia Civil e Ambiental, fazendo parte atualmente deste programa como Professor Voluntário.

http://lattes.cnpq.br/8260652949733370

ORCID:  https://orcid.org/0000-0003-0653-1227

Heliton Weide, Universidade Federal de Santa Maria - UFSM

Acadêmico do 10º semestre de graduação, do curso de Engenharia Civil na Universidade Federal de Santa Maria (UFSM). Atuou como voluntário no Laboratório de Materiais para Construção Civil (LMCC), auxiliando no processo de caracterização e ensaios de argamassas e elementos de alvenaria estrutural (2018). Foi bolsista de pesquisa pelo programa PIBIC (CNPQ), participando de pesquisas a respeito da avaliação do modo de ruptura de elementos de alvenaria estrutural (2019-2020).

 http://lattes.cnpq.br/1188464308379628

 

References

F. DESCHNER et al., “Hydration of Portland cement with high replacement by siliceous fly ash”, Cem. Concr. Res., vol. 42, no 10, p. 1389–1400, 2012.

P. K. MEHTA, “Pozzolanic and Cementitious By-Products in Concrete - Another Look”, in International Conference on fly ashs, silica fume, alg, and natural pozzolans in concrete, 1989, p. 1–44.

G. C. ISAIA, A. L. G. GASTALDINI, e R. MORAES, “Physical and pozzolanic action of mineral additions on the mechanical strength of high-performance concrete”, Cem. Concr. Compos., vol. 25, p. 69–76, 2003.

P. K. MEHTA, “Rice husk ash - A unique supplementary cementing material”, in Advances in concrete technology, 2o., V. M. Malhotra, Org. Ottawa: Canmet, 1992, p. 407–431.

S. JUNG, V. SARASWATHY, S. KARTHICK, P. KATHIRVEL, e S.-J. KWON, “Microstructure Characteristics of Fly Ash Concrete with Rice Husk Ash and Lime Stone Powder”, Int. J. Concr. Struct. Mater., 2018.

B. LOTHENBACH, K. SCRIVENER, e R. D. HOOTON, “Supplementary cementitious materials”, Cem. Concr. Res., vol. 41, no 12, p. 1244–1256, 2011.

I. JAWED, “Hardened mortar and concrete with fly ash”, in Rilem Report 7, 1991, p. 42–159.

K. DE WEERDT, M. BEN HAHA, G. LE SAOUT, K. O. KJELLSEN, H. JUSTNES, e B. LOTHENBACH, “Hydration mechanisms of ternary Portland cements containing limestone powder and fl y ash”, Cem. Concr. Res., vol. 41, no 3, p. 279–291, 2011.

YU, R.; SPIESZ, P.; BROUWERS, H. J. H. Mix design and properties assessment of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC). Cement and Concrete Research, v. 56, p. 29–39, 2014.

YAZICI, H. et al. Utilization of fly ash and ground granulated blast furnace slag as an alternative silica source in reactive powder concrete. Fuel, v. 87, n. 12, p. 2401–2407, 2008.

HASSAN, A. M. T.; JONES, S. W.; MAHMUD, G. H. Experimental test methods to determine the uniaxial tensile and compressive behaviour of Ultra High Performance Fibre Reinforced Concrete (UHPFRC). Construction and Building Materials, v. 37, p. 874–882, 2012.

LE THAN, H.; SIEWERT, K.; LUDWIG, H. M. Synergistic Effect of Rice Husk Ash and Fly Ash on Properties of Self-Compacting High-Performance Concrete. In: SCHMIDT, M. et al. (Eds.). International Symposium on UHPC and Nanotechnology for High-Performance Construction Materials. 3rd. Kassel. Proceedings. Kassel: University Kassel Press, p. 187-196, 2012.

VAN, V.; LUDWIG, H. Proportioning optimization of UHPC containing rice husk ash and ground granulated blast-furnace slag. Proceedings of the 3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials, Kassel, Germany. p. 197-205, 2012.

LAMPROPOULOS, A. P. et al. Strengthening of reinforced concrete beams using ultra high performance fibre reinforced concrete (UHPFRC). Engineering Structures, v. 106, p. 370–384, 2016.

A. B. de N. T. ABNT, NBR 12653. Materiais pozolânicos - Requisitos. Rio de Janeiro, 2014.

A. B. de N. T. ABNT, NBR 6473. Cal virgem e cal hidratada - Análise química. Rio de Janeiro, 2003.

A. B. de N. T. ABNT, NBR 9289. Cal hidratada para argamassas - Determinação da finura. Rio de Janeiro, 2000.

A. B. de N. T. ABNT, NBR 9289. Cal hidratada para argamassas - Requisitos. Rio de Janeiro, 2003.

HÜSKEN, G.; BROUWERS, H. J. H. A new mix design concept for earth-moist concrete: A theoretical and experimental study. Cement and Concrete Research, v. 38, n. 10, p. 1246–1259, 2008.

BROUWERS, H. J. H.; RADIX, H. J. Self-compacting concrete: Theoretical and experimental study. Cement and Concrete Research, v. 35, n. 11, p. 2116–2136, 2005.

RICHARD, P.; CHEYREZY, M. (1995). Composition of reactive powder concretes. Cement and Concrete Research. v. 25, n. 7, p. 1501-1511, Oct.

AITCIN, P. C.; RICHARD, P. (1996). The Pedestrian/Bikeway Bridge of Sherbrooke. In: INTERNATIONAL SYMPOSIUM OF HIGH STRENGTH/HIGH PERFORMANCE CONCRETE, 4., 1996, Paris, France. Anais. Paris. p. 1399-1406.

VANDERLEI, R. D. Análise experimental do concreto de pós reativos: dosagem e propriedades mecânicas. Tese de Doutorado. Escola de Engenharia de São Carlos da Universidade de São Paulo, São Paulo, 2004.

A. B. de N. T. ABNT, NBR 5738. Concreto - Procedimento para moldagem e cura de corpos de prova. Rio de Janeiro, 2016.

A. B. de N. T. ABNT, NBR 5739. Concreto - Ensaio de compressão de corpos de prova cilíndricos. Rio de Janeiro, 2018.

B. LOTHENBACH, P. DURDZINSKI, e K. DE WEERDT, “Thermogravimetric analysis”, in A Practical Guide to Microstructural Analysis of Cementititous Materials, K. L. Scrivener, R. Snellings, e B. Lothenbach, Orgs. CRC Press - Taylor & Francis Group, 2016, p. 177–211.

THIERY, M.; VILLAIN, G.; DANGLA, P.; PLATRET, G. Investigation of the carbonation front shape on cementitious materials: effects of the chemical kinetics. Cement and Concrete Research, v. 106, n. 37, 2007. p. 1047-1058.

DEHN, F.: Ultrahochfeste Betone. In: König, G.; Tue, N. V.; Zink, M.: Hochleistungsbeton-Bemessung, Herstellung und Anwendung. Verlag Ernst & Sohn, Berlin, 2001.

L. ALARCON-RUIZ, G. PLATRET, E. MASSIEU, e A. EHRLACHER, “The use of thermal analysis in assessing the effect of temperature on a cement paste”, Cem. Concr. Res., vol. 35, no 3, p. 609–613, 2005.

HABEL, K. et al. Development of the mechanical properties of an Ultra-High Performance Fiber Reinforced Concrete (UHPFRC). Cement and Concrete Research, v. 36, n. 7, p. 1362–1370, 2006.

MEHTA, P. K.; MONTEIRO, P. J. M. CONCRETO: Estrutura, Propriedades e Materiais. 2a edição ed. Rio de Janeiro: Ibracon, 2014.

HA, L. T.; SIEWERT, K.; H. M. Synergistic Effect of Rice Husk Ash and Fly Ash on Properties of Self-Compacting High Performance Concrete. Proceedings of Hipermat 2012, 3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials. Kassel, pg 186 a 195. March 7–9, 2012.

KIM, M. T. (1997). Deposition behavior of hexamethydisiloxane films based on the FTIR analysis of Si–O–Si and Si–CH3 bonds. Thin Solid Films, 311(1-2), 157–163. doi:10.1016/s0040-6090(97)00683-4.

GARCÍA LODEIRO, I., MACPHEE, D. E., PALOMO, A., & FERNÁNDEZ-JIMÉNEZ, A. (2009). Effect of alkalis on fresh C–S–H gels. FTIR analysis. Cement and Concrete Research, 39(3), 147–153. doi:10.1016/j.cemconres.2009.01.003.

VÁSQUEZ, A., CÁRDENAS, V., ROBAYO, R. A., & de GUTIÉRREZ, R. M. (2016). Geopolymer based on concrete demolition waste. Advanced Powder Technology, 27(4), 1173–1179. doi:10.1016/j.apt.2016.03.029.

PARANDE, A. K., BABU, B. R., PANDI, K., KARTHIKEYAN, M. S., & PALANISWAMY, N. (2011). Environmental effects on concrete using Ordinary and Pozzolana Portland cement. Construction and Building Materials, 25(1), 288–297. doi:10.1016/j.conbuildmat.2010.06.02.

YILMAZ, B.; OLGUN, A. Studies on cement and mortar containing low-calcium fly ash, limestone, and dolomitic limestone. Cement & Concrete Composites, v. 30, p. 194–201, 2008.

GAO, X.; YU, Q. L.; BROUWERS, H. J. H. Properties of alkali activated slag–fly ash blends with limestone addition. Cement & Concrete Composites, v. 59, p. 119–128, 2015.

YU, P.; KIRKPATRICK, R. J.; POE, B.; MCMILLAN, P. F.; CONG, X. Structure of Calcium Silicate Hydrate (C-S-H): Near-, Mid-, and Far-Infrared Spectroscopy. Journal American Ceramic Society, v. 82, n. 3, p. 742–748, 1999.

MEDINA, C.; SÁEZ DEL BOSQUE, I. F.; FRÍAS, M.; SÁNCHEZ DE ROJAS, M. I. Design and characterisation of ternary cements containing rice husk ash and fly ash. Construction and Building Materials, v. 187, p. 65–76, 2018. Elsevier Ltd. Disponível em: <https://doi.org/10.1016/j.conbuildmat.2018.07.174>.

ROMANO*, R. C. O.; FUJII, A. L.; SOUZA, R. B.; TAKEASHI, M. S.; PILEGGI, R. G.; M. A. CINCOTTO. Monitoring hydration of ordinary Portland cement with bauxite residue (2016) http://dx.doi.org/10.1590/0366-69132016623632039.

AHMARI, S., REN, X., TOUFIGH, V., & ZHANG, L. (2012). Production of geopolymeric binder from blended waste concrete powder and fly ash. Construction and Building Materials, 35, 718–729. doi:10.1016/j.conbuildmat.2012.04.044.

ARIFFIN, M. A. M., BHUTTA, M. A. R., HUSSIN, M. W., MOHD TAHIR, M., & AZIAH, N. (2013). Sulfuric acid resistance of blended ash geopolymer concrete. Construction and Building Materials, 43, 80–86. doi:10.1016/j.conbuildmat.2013.01.018.

ROUSTAN, J. L.; LIJOUR. Y.; MORROW, B. A. Time-resolved FTIR study of the adsorption and reaction of tricarbonylnitrosylcobalt on alumina. Publication Date: July 1, 1987 https://doi.org/10.1021/ic00262a034.

ARRIZABALAGA, I., GÓMEZ-LASERNA, O., CARRERO, J. A., BUSTAMANTE, J., RODRÍGUEZ, A., ARANA, G., & MADARIAGA, J. M. (2015). Diffuse reflectance FTIR database for the interpretation of the spectra obtained with a handheld device on built heritage materials. Analytical Methods, 7(3), 1061–1070. doi:10.1039/c4ay02189d.

ABDULLAH, M. M AL B. 1*; HUSSIN, K.; BNHUSSAIN, M.; ISMAIL, K. N.; YAHYA, Z.; RAZAK, R. A. Fly Ash-based Geopolymer Lightweight Concrete Using Foaming Agent. International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms. Int. J. Mol. Sci. 2012, 13, 7186-7198; doi:10.3390/ijms13067186.

Published

2023-10-10

How to Cite

Casanova Sokolovicz, B. ., Lübeck, A., Cechella Isaia, G. ., & Weide, H. (2023). ULTRA-HIGH PERFORMANCE CONCRETES WITH PHENOLIC FOUNDRY SAND: MECHANICAL AND MICROSTRUCTURAL EVALUATION: CONCRETOS DE ULTRA ALTO DESEMPENHO COM AREIA DE FUNDIÇÃO FENÓLICA: AVALIAÇÃO MECÂNICA E MICROESTRUTURAL. ix Sustentável, 9(5), 183–199. https://doi.org/10.29183/2447-3073.MIX2023.v9.n5.183-199

Most read articles by the same author(s)