ASSESSMENT OF THE MECHANICAL AND ENVIRONMENTAL PROPERTIES OF CONCRETES WITH HIGH LEVELS OF LIME FILLER AND FLY ASH
AVALIAÇÃO DAS PROPRIEDADES MECÂNICAS E AMBIENTAIS DE CONCRETOS COM ALTOS TEORES DE FILER CALCÁRIO E CINZA VOLANTE
DOI:
https://doi.org/10.29183/2447-3073.MIX2024.v10.n3.195-211Keywords:
Sustainability; High strength concrete; Limestone filler; Fly ash; high strength concrete.Abstract
This study evaluated the possibility of producing high strength concrete (HSC) by replacing Portland cement (PC) with high levels of limestone filler (LF) in binary mixtures and ternary mixtures of PC, LF and fly ash (FA) in contents varying from 50 % to 80 %, with the objective of reducing CO2 emissions during manufacture. Parameters evaluated were axial compression strength, CO2 emissions of the constituent materials and cost per m³ of concrete with focus on reductions in environmental impact. Results indicated the possibility of producing HSC with high LF and FA contents, reduced water/binder content (w/b = 0.25) and workability of 100 mm ± 20 mm through particle packaging and the use of a superplasticizer additive. The resulting concrete had axial compression strength of 51.8 MPa at 91 days with 77 kgco2/m3 of concrete for a mixture with 80 % of PC replaced with 70 % LF and 10 % FA. These amounts corresponded to the use of only 97 kg/m3 of PC (87 kg/m3 of clinker) and 104 L/m3 of water. Thus, it was demonstrated to be possible to obtain a HSC with fck of up to 80 MPa and low CO2 emissions.
References
Associação Brasileira de Normas Técnicas., NBR 6118: Projeto de estruturas de concreto. Rio de Janeiro, 2023.
Associação Brasileira de Normas Técnicas., NBR 5739: Concreto - Ensaio de compressão de corpos de prova cilíndricos. Rio de Janeiro, 2018.
Brazilian Association of Technical Standards., NBR 5738: Concrete - Procedure for molding and curing specimens. Rio de Janeiro, 2015.
Bataggin, A. Cimento Portland. In: Isaia, G. C. (Ed.). Materiais de Construção Civil e Princípios de Ciência e Engenharia dos Materiais. 3. ed. São Paulo: Ibracon, 2017. p. 761- 792.
Bataggin, A. F.; Silva, M. G. Por que os cimentos com adições vieram pra ficar? Concreto & Construções, p. 33–39, 2019
Bentz, D. P. Modeling the influence of limestone filler on cement hydration using CEMHYD3D. Cement and Concrete Composites, v. 28, p. 124-129, 2006. Accessed on: 28 Nov. 2020.
Berodier, E.; Scrivener, K. Evolution of pore structure in blended systems. Cement and Concrete Research, v. 73, p. 25-35, 2015.
Bonavetti, V.; Donza, H.; Menendez, G.; Cabrera, O.; Irassar, E. F. Limestone filler cement in low w/c concrete: A rational use of energy. Cement and Concrete Research, n. 33, p. 865-871, 2003.
Costa, B. L. C., Quantificação das emissões de CO2 geradas na produção de materiais utilizados na construção civil. Dissertação, COPPE/UFRJ, Rio de Janeiro, RJ, Brasil, 2012.
Courard, L., Herfort, D., Villagrán, Y., Limestone powder. In: RILEM State-of-the-art Reports, Technical Committee 238 SCM, Working Group 4., Cham: Springer, v. 25, p. 122-151, 2018.
Damineli, B. L., Conceitos para formulação de concretos com baixo consumo de ligantes: controle reológico, empacotamento e dispersão de partículas, Tese de D.Sc., Escola Politécnica da Universidade de São Paulo, São Paulo, SP, Brasil, 2013.
De Matos, P. R., Sakata, R. D., Prudêncio, L. R., Eco-efficient low binder high-performance self-compacting concretes”. Construction and Building Materials, v. 225, pp. 941–955, 2019.
De Weerdt, K. et al., Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. Cement and Concrete Research, n. 41, pp. 279-291, 2011.
Deschner, F. et al., Hydration of Portland cement with high replacement by siliceous fly ash. Cement and Concrete Research, v. 41, pp. 1389-1400, 2012.
Detwiler, R. J., Mehta, P. K., Chemical and Physical Effects of Silica Fume on the Mechanical Behavior of Concrete. ACI Materials Journal, v. 86, n. 6, pp. 609–614, 1989.
Dhir, R. K. et al., Evaluation of Portland limestone cements for use in concrete construction. Materials and Structures, v. 40, n. 5, pp. 459, 2007.
EMMA. Elkem Materials Mixture analyser. Disponível em: http://www.clubedo concreto.com.br/2015/07/empacotamento-com-software-da-elkem- emma.html. Acesso em: 05 dez. 2020.
Espining, O., Effect of limestone filler BET (H2O)-area on the fresh and hardened properties of self-compacting concrete. Cement and Concrete Research, v. 38, n. 7, pp. 938-944, 2008.
Fennis, S. A., Walraven, J. C., Using particle packing technology for sustainable concrete mixture design. Heron, v. 57, n. 2, pp. 73-101, 2012.
Funk, J., Dinger, D., Particle packing, part III: discrete versus continuous particles sizes. Interceram, n. 41, pp. 332-334, 1992.
Gartner, E., Hirao, H., A review of alternative approaches to the reduction of CO2 emissions associated with the manufacture of the binder phase in concrete. Cementand Concrete Research, v. 78, pp. 126–142, Jun. 2015.
Global Cement and Concrete Association (GCCA) (2017)., https://gccassociation.org/sustainability-innovation/gnr-gcca-in-numbers/. Acessado em abril de 2020.
Habert, G. et al., Lowering the global warming impacto f bridge rehabilitations by using Ultra High Performance Fibre Reinforced Concretes. Cement and Concrete Composites, n. 38, pp. 1-11, 2013.
Hemalatha, M. S.; Santhanam, M. Characterizing supplementary cementing materials in blend mortars. Construction and Building Materials, v. 191, p. 440-459, 2018.
Irassar, E. F. Sulfate attack on cementitious materials containing limestone filler - A review. Cement and Concrete Research, v. 39, p. 241 - 254, 2009.
Irassar, E. F.; Bonavetti, V. L.; Menendez, G.; Carrasco, M. F. Hidratación y propiedades de cemento ternarios con filler calcáreo y escoria. Revista ALCONPAT, v. 5, p. 84-96, 2015.
Isaia, G. C. Efeito de misturas binárias e ternárias de pozolanas em concreto de elevado desempenho: Um estudo de Durabilidade com Vistas à Corrosão da Armadura. 1995. Tese (Doutorado)–Escola Politécnica da Universidade de são Paulo, São Paulo, SP, 1995.
Isaia, G. C., Furquim, P., Gastaldini, A. L. G., A statistical approach of binary and ternary concrete mixtures with mineral admixtures. Construction & Building Materials, v. 36, p. 597-603, 2012.
Isaia, G. C., Gataldini, A. L. G., Moraes, R. Physical and pozzolanic action of mineral admixtures on the mechanical strength of high-performance concrete. Cement & Concrete Composites, v. 25, pp. 69-76, 2003.
Isaia, G.C., Gastaldini, A. L. G., Perspectivas ambientais e econômicas do concreto com altos teores de adições minerais: um estudo de caso. Ambiente Construido, v.4, n.2, pp. 19-30, Abr/Jun. 2004.
John, M. V. et al. Fillers in cementitious materials – experience, recent advances and future potential. Cement Concrete Research, 2018.
Kadri, E. H.; Duval, R. Effect of ultrafine particles on heat of hydration of cement mortars. ACI materials Journal, v. 99, p. 138-142, 2002.
Kjellsen, K. O., Guimaraes, M., Nilsson, A., The CO2 balance of concrete in a life cycle perspective. Danish Technological-DTI, 2005.
Lollini, F., Redaeli, E., Bertolini, L., Effects of portland cement replacement with limestone on the properties of hardened concrete. Cement and Concrete Composites, v. 46, pp. 32-40, 2014.
Lothenbach, B. et al., Influence of limestone on the hydration of Portland cements. Cement and Concrete Research, v. 38, n. 6,pp. 848-860, 2008.
Madani, H. et al., The influence of Ultrafine Filler Materials on Mechanical and Durability Characteristics of Concrete. Civil Engineering Infrastructures Journal, n.41, pp. 251-262, 2016.
Malhotra, V. M., Zhang, M. H., Read, P. H., Ryell, J., Long-Term Mechanical Properties and Durability Characteristics of High-Strength/High-Performance Concrete Incorporating Supplementary Cementing Materials under Outdoor Exposure Conditions. ACI Materials Journal, v. 97, no. 5, September-October 2000.
Mehdipour, I.; Kumar, A.; Khayat, K. H. Rheology, hydration, and strength evolution of interground limestone cement containing PCE dispersant and high volume supplementary cementitious materials. Materials & Desing, v. 127, p. 54-56, 2017.
Mehta, P. K., Monteiro, P. J. M., Concreto: Microestrutura, Propriedades e Materiais, 2 ed. São Paulo, IBRACON, 2014.
Mindess, S.; Young, J. F.; Darwin, DE. Concrete. New Jersey: Prentice Hall, 2003. Available at: https://search.worldcat.org/pt/title/concrete/oclc/782531487; Accessed on: 27 Aug. 2020.
Neville, A. M. Propriedades do Concreto. 5. ed. Bookman, São Paulo, 2016.
Palm, S., Proske, T., Rezvani, M., Hainer, S., Muller, C., Graubner, C. A., Cements with a high limestone content – Mechanical properties, durability and ecological characteristics of the concrete. Construction and Building Materials, v. 119, pp. 308-318, Ago. 2016.
Perlot, C., Rougeau, P., Dehaudt, S., Slurry of metakaolin combined with limestone addition for self-compacted concrete - Application for precast industry. Cement & Concrete Composites, v. 44, pp. 50-57, Nov. 2013.
Proske, T.; Hainer, S.; Rezvani, M.; Graubner, C. A. Eco-friendly concretes with reduced water and cement contentes – Mix design principles and laboratory tests. Cement and Concrete Research, v. 51, p. 38-46, 2013.
Ramezanianpour, A. M., Hooton, R. D., A study on hydration, compressive strength, and porosity of Portland-limestone cement mixes containing SCMs. Cement and Concrete Composites, v. 51, pp. 1-13, 2014.
Sampaio, J. A.; Almeida, S. L. Capítulo 16 - Calcário e Dolomito. Disponível em: http://www.cetem.gov.br/agrominerais/teste/livros/16-agromineraiscalcario- dolomito.pdf. Acesso em: 20 dez. 2017.
Scrivener, K. L., John, V. M., Gartner, E. M., Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cement and Concrete Research, v. 114, pp. 2-26, Mar. 2018.
Scrivener, K. L.; Lothenbach, B.; De Belie, N.; Gruyaert, E.; Skibsted, J.; Snellings, R.; Vollpracht, A. TC 238-SCM: Hydration and microstructure of concrete with SCMs. Materials and Structures, v. 48, p. 835-862, 2015. Disponível em: https://link.springer.com/article/10.1617/s11527-015-0527-4. Acesso em: 20 dez. 2020.
SINAPI - National Civil Construction Cost and Indices Research System. Caixa Econômica Federal, Brasília, 2023.
Su, N.; Miao, B. A new method for the mix design of medium strength flowing concrete with low cement content. Cement and Concrete Composites, v. 25, p. 215-222, 2003. Available at: https://www.sciencedirect.com/science/article/abs/pii/S0958946502000136. Accessed on: 20 Aug. 2020.
TCPO - Compositions and reference prices for inputs and services researched by PINI. São Paulo, 2023.
Wongkeo, W.; Thongsanitgarn, P.; Chaipanich, A.; Poon, C. S. Heat of hydration of Portland high-calcium fly ash cement incorporating limestone powder: Effect of limestone particle size. Construction and Building Materials, vol. 66, p. 410–417, 2014. Available at: https://www.sciencedirect.com/science/article/abs/pii/S0950061814005443. Accessed on: 27 Dec. 2020.
Tsivilis, S., A study on the chloride diffusion into Portland limestone cement concrete. Materials Science Forum, 2010; 636–37(2):1355–61.
Yousuf, S., Sanchez, L. F. M., Shammeh, S. A., The use of particle packing models (PPMs) to design structural low cement concrete as an alternative for construction industry. Journal of Building Engineering, v. 25, pp.100-114, Out. 2019.
YU, R.; SPIESZ, P.; BROUWERS, H. J. H. Development of an eco-friendly ultra-high performance concrete (UHPC) with efficient cement and mineral admixtures uses. Cement and Concrete Composites, v. 55, p. 383-394, 2015. Available at: https://josbrouwers.bwk.tue.nl/publications/Journal115.pdf. Accessed on: 20 Aug. 2020.
Zhao, H., Sun, W., Wu, X., Gao, B. The properties of the self-compacting concrete with fly ash and ground granulated blast furnace slag mineral admixtures. Journal of Cleaner Production, v. 95, pp.66-74, 2015.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Silvane Santos da Silva, André Lübeck, Geraldo Cechella Isaia, Gustavo Aguiar Isaia, Almir Barros da Silva Santos Neto

This work is licensed under a Creative Commons Attribution 4.0 International License.
Creative Commons Copyright Notice
Attribution 4.0 International