PROJETAR PARA DESMONTAR: REVISÃO SOBRE A AVALIAÇÃO DO CICLO DE VIDA (ACV) DE ESTRUTURAS DE CONCRETO
DESIGN FOR DISASSEMBLY: A REVIEW OF CONCRETE STRUCTURES LIFE CYCLE ASSESSMENT (LCA)
DOI:
https://doi.org/10.29183/2447-3073.MIX2023.v9.n2.157-170Palavras-chave:
Projetar para desmontagem, projetar para desconstrução, avaliação de ciclo de vida, impactos ambientais, estrutura de concretoResumo
O setor da construção tem se tornado um dos grandes motivos de preocupação ambiental, principalmente quando se trata da emissão de dióxido de carbono e geração de resíduos. Uma forma de mitigar tais impactos consiste na substituição de um sistema linear para um modelo de Economia Circular (EC). Nesse modelo, a reciclagem de Resíduos de Construção e Demolição (RCD) consiste em uma prática bastante estudada há mais de 20 anos, enquanto pesquisas sobre o reuso de elementos construtivos a partir da metodologia de projetar para desconstrução (DfD, Design for Deconstruction/Disassembly) tem ganhado destaque apenas nos últimos cinco anos. Dentre tais pesquisas, a avaliação da sustentabilidade por meio de indicadores ambientais é ainda mais escassa. Desta forma, o presente artigo faz uma revisão sistemática da literatura, reunindo trabalhos que apontam os principais avanços da prática DfD, com foco em estruturas de concreto armado sob a perspectiva da Avaliação do Ciclo de Vida (ACV). Com base nos artigos analisados, foi observado que, apesar da ausência de método unificado para quantificar seus benefícios, a prática de DfD se mostrou vantajosa para atenuar os impactos ambientais do setor da construção.
Referências
IEA - INTERNATIONAL ENERGY AGENCY. Technology Roadmap - Low-Carbon Transition in the Cement Industry. Paris. Disponível em: <https://www.iea.org/reports/technology-roadmap-low-carbon-transition-in-the-cement-industry>. Acesso em: 9 jul. 2022.
CROWTHER, P. DESIGNING FOR DISASSEMBLY TO EXTEND SERVICE LIFE AND INCREASE SUSTAINABILITY Architectural disassembly, In: 8th international Conference on Durability of Building Materials and Components. Service Life and Asset Management: Vancouver (Canada): Institute for Research in construction, 1999.
AMARIO, M. et al. Optimization of normal and high strength recycled aggregate concrete mixtures by using packing model. Cem. Concr. Compos.v.84, p. 83 92, 2017. doi.org/10.1016/j.cemconcomp.2017.08.016.
BENNETT, B. et al. Global warming potential of recycled aggregate concrete with supplementary cementitious materials. Journal of Building Engineering, v. 52, 2022. doi.org/10.1016/j.jobe.2022.104394.
O’GRADY, T. et al. Design for disassembly, deconstruction and resilience: A circular economy index for the built environment. Resources, Conservation and Recycling, v. 175, 2021. doi.org/10.1016/J.RESCONREC.2021.105847.
KANTERS, J. Design for Deconstruction in the Design Process: State of the Art. Buildings, v. 8, n. 11, p. 150, 2018. doi.org/10.3390/BUILDINGS8110150.
SALAMA, W. Design of concrete buildings for disassembly: An explorative review. International Journal of Sustainable Built Environment, v. 6, n. 2, p. 617–635, 2017. doi.org/10.1016/J.IJSBE.2017.03.005.
TLEUKEN, A. et al. Design for Deconstruction and Disassembly: Barriers, Opportunities, and Practices in Developing Economies of Central Asia. Procedia CIRP. Elsevier B.V., 2022. doi.org/10.1016/j.procir.2022.02.148.
XIAO, J.; et al. Structural behavior of a new moment-resisting DfD concrete connection. Engineering Structures, v. 132, p. 1–13, 2017. doi.org/10.1016/j.engstruct.2016.11.019.
FIGUEIRA, D. et al. Demountable connections of reinforced concrete structures: Review and future developments. Structures Elsevier Ltd, 2021. doi.org/10.1016/j.istruc.2021.09.053.
DING, T. et al. Seismic behavior of concrete shear walls with bolted end-plate DfD connections. Engineering Structures, v. 214, 2020. doi.org/10.1016/J.ENGSTRUCT.2020.110610.
CAI, G.; WALDMANN, D. A material and component bank to facilitate material recycling and component reuse for a sustainable construction: concept and preliminary study. Clean Technologies and Environmental Policy, v. 21, n. 10, p. 2015–2032, 2019. doi.org/10.1007/s10098-019-01758-1.
ONG, K. C. G. et al. Experimental investigation of a DfD moment-resisting beam–column connection. Engineering Structures, v. 56, p. 1676–1683, 2013. doi.org/10.1016/J.ENGSTRUCT.2013.08.006.
BS, 2006a, ISO 14040. Environmental Management—Life Cycle Assessment — Principles and framework; ISO: Geneva, Switzerland, 2006.
BS, 2006b, ISO 14044. Environmental Management—Life Cycle Assessment — Requirements and Guidelines; ISO: Geneva, Switzerland, 2006.
CEN, 2011. EN 15978 Sustainability of construction works - Assessment of environmental performance of buildings - Calculation method.
CEN, 2019. EN 15804+A2 Sustainability of construction works - Environmental product declarations - Core rules for the product category of construction products
JOENSUU, T. et al. Developing Buildings’ Life Cycle Assessment in Circular Economy-Comparing methods for assessing carbon footprint of reusable components. Sustainable Cities and Society, v. 77, 2022. doi.org/10.1016/j.scs.2021.103499.
VANDERVAEREN, C. et al. More than the sum of its parts: Considering interdependencies in the life cycle material flow and environmental assessment of demountable buildings. Resources, Conservation and Recycling, v. 177, 2022. doi.org/10.1016/j.resconrec.2021.106001.
RIBEIRO BRANDÃO, V.; CAMPOS, M. A. S. Avaliação ambiental de sistemas de aproveitamento de água pluvial: um mapeamento da literatura. Paranoá, n. 23, p. 93–111, 2019. doi.org/10.18830/issn.1679-0944.n23.2019.09.
TONIOLO, S. et al. Are design for disassembly principles advantageous for the environment when applied to temporary exhibition installations? Sustainable Production and Consumption, v. 28, p. 1262–1274, 2021. doi.org/10.1016/j.spc.2021.07.016.
PADUART, A. et al. Re-design for change: Environmental and financial assessment of a dynamic renovation approach for residential buildings. WIT Transactions on Ecology and the Environment, v. 150, p. 273–284, 2011. doi.org/10.2495/SDP110241.
DENSLEY TINGLEY, D.; DAVISON, B. Developing an LCA methodology to account for the environmental benefits of design for deconstruction. Building and Environment, v. 57, p. 387–395, 2012. doi.org/10.1016/j.buildenv.2012.06.005.
MACHADO, R. C. et al. Analysis of guidelines and identification of characteristics influencing the deconstruction potential of buildings. Sustainability, v. 10, n. 8, 2018. doi.org/10.3390/su10082604.
ECKELMAN, M. J. et al. Life cycle energy and environmental benefits of novel design-for-deconstruction structural systems in steel buildings. Building and Environment, v. 143, p. 421–430, 2018. doi.org/10.1016/j.buildenv.2018.07.017.
EBERHARDT, L. C. M. et al. Life cycle assessment of a Danish office building designed for disassembly. Building Research and Information, v. 47, n. 6, p. 666–680, 2019. doi.org/10.3390/su12229579.
XIAO, J. et al. Effect of recycled aggregate concrete on the seismic behavior of DfD beam-column joints under cyclic loading, Advances in Structural Engineer, v. 24, n. 8, p. 1709–1723, 2021. doi.org/10.1177/1369433220982729.
EBERHARDT, L. C. M. et al. Development of a life cycle assessment allocation approach for circular economy in the built environment. Sustainability, v. 12, n. 22, p. 1–16, 2020. doi.org/10.1080/09613218.2018.1517458.
RASMUSSEN, F. N. et al. Upcycling and Design for Disassembly - LCA of buildings employing circular design strategies. IOP Conference Series: Earth and Environmental Science. Anais. Institute of Physics Publishing, 2019. doi.org/10.1088/1755-1315/225/1/012040.
XIA, B. et al. Life cycle assessment of concrete structures with reuse and recycling strategies: A novel framework and case study. Waste Management, v. 105, p. 268–278, 2020. doi.org/10.1016/j.wasman.2020.02.015.
ARRIGONI, A. et al. Life cycle environmental benefits of a forward-thinking design phase for buildings: the case study of a temporary pavilion built for an international exhibition. Journal of Cleaner Production, v. 187, p. 974–983, 2018. doi.org/10.1016/j.jclepro.2018.03.230.
TINGLEY, D. D.; DAVISON, B. Design for deconstruction and material reuse. Proceedings of Institution of Civil Engineers: Energy. 2011. doi.org/10.1680/ener.2011.164.4.195.
BRONIEWICZ, F.; BRONIEWICZ, M. Sustainability of steel office buildings. Energies, v. 13, n. 14, 2020. doi.org/10.3390/en13143723.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Lucas Caon Menegatti, Lucas Rosse Caldas, Romildo Dias Toledo Filho
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Aviso de Direito Autoral Creative Commons
1. Política para Periódicos de Acesso Livre
Autores que publicam nesta revista concordam com os seguintes termos:
a. Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
b. Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
c. Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto após o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).