CIRCULAR BIOECONOMY AND CLIMATE CHANGE: EVALUATION OF CARBON FOOTPRINT OF REUSED WOODEN PALLETS

Authors

  • Lucas Rosse Caldas Programa de Pós-Graduação em Arquitetura (PROARQ) Faculdade de Arquitetura e Urbanismo (FAU UFRJ) https://orcid.org/0000-0002-3108-2833

DOI:

https://doi.org/10.29183/2447-3073.MIX2021.v7.n2.27-40

Keywords:

Biomaterials, Life cycle, Service life, Biogenic carbon.

Abstract

The reuse of wooden pallets in architecture and design is an increasingly observed practice today. It is known that wood is a biomaterial and therefore can store CO2. Thus, the use of wooden pallets has a potential to mitigate the impacts of global warming and climate change, meeting what has been discussed in the so-called circular bioeconomy. The present study aimed to evaluate the carbon footprint of a wooden pallet panel, considering different origins of the pallets and different periods of the panel's service life. We used two methods, ISO 14067 (2014) and ILCD (2011), considering a cradle to grave scope. The inventory was carried out based on primary data with data from the literature and from the Ecoinvent v.3.3 database. The results showed that the scenario with reused pallets and a service life of 40 years was the most advantageous, with a carbon footprint of - 15.09 kgCO2-eq/m², when the ILCD (2011) is used. We conclude that the reuse of pallets in architecture and design projects has a great potential to reduce CO2-eq emissions, justifying the importance of thinking about a circular bioeconomy.

Author Biography

Lucas Rosse Caldas, Programa de Pós-Graduação em Arquitetura (PROARQ) Faculdade de Arquitetura e Urbanismo (FAU UFRJ)

Professor Adjunto FAU UFRJ. Pesquisador PROARQ, Engenheiro Civil, Ambiental e Sanitarista. Especialista em Engenharia Diagnóstica. Doutor em Engenharia Civil (COPPE/UFRJ).

References

ARRIGONI, A.; PELOSATO, R.; MELIÀ, P.; RUGGIERI, G.; SABBADINI, S.; DOTELLI, G. Life cycle assessment of natural building materials: the role of carbonation, mixture components and transport in the environmental impacts of hempcrete blocks. Journal of Cleaner Production, v. 149, p. 1051– 1061, 2017.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 15575-1: edificações habitacionais: desempenho. Rio de Janeiro, 2013.

ASSOCIAÇÃO BRASILEIRA DE SUPERMERCADOS (ABRAS). CPP - Comitê permanente de paletização. Especificação do palete padrão para distribuição nacional PBR – I. http://www.abras.com.br/palete-pbr/fabricantes-credenciadas/. Acesso em 20. abr. 2018.

BAUNGARTEN, C.; MELLO, N. V. C.; ALMEIDA, J. S. Casa Palete. 1º Seminário de Construções Sustentáveis. Anais...Passo Fundo, RS, 2015.

BENGTSSON, J, JAMES LOGIE, J. Life cycle assessment of one-way and pooled pallet alternatives. Procedia CIRP, v. 29, p. 414 – 419, 2015.

BORGES, P. H. R. et al. Estudo Comparativo da Análise de Ciclo de Vida de Concretos Geopoliméricos e de Concretos à Base de Cimento Portland Composto (CP II). Ambiente Construído, Porto Alegre, v. 14, n. 2, p. 153-168, abr./jun. 2014.

BRANDÃO, M.; LEVASSEUR, A.; KIRSCHBAUM, M.; WEIDEMA, B.; COWIE, A.; JØRGENSEN, S., et al.,Key issues and options in accounting for carbon sequestration and temporary storage in life cycle assessment and carbon footprinting. International Journal of Life Cycle Assessessment, v.18, p. 230-240, 2013.

BRE 2013. Product category rules for type III environmental product declaration of construction products to EN 15804:2012, 2013, p. 36-37.

CABEZA, L. et al. Life Cycle Assessment (LCA) and Life Cycle Energy Analysis (LCEA) of Buildings and the Building Sector: a review. Renewable and Sustainable Energy Reviews, v. 29, p. 394-416, 2014.

CALDAS, L. R. Uso de Paletes de Madeira no Design e Arquitetura: Avaliação de aspectos técnicos, de ensino e de mercado. In: Anais...VII Encontro de Sustentabilidade de Projeto, 2019, Florianópolis. VII ENSUS, 2019..

CALDAS, L. R.; LIRA, J. S. de M. M.; MELO, P. C. de.; SPOSTO, R. M. Life cycle carbon emissions inventory of brick masonry and light steel framing houses in Brasilia: proposal of design guidelines for low-carbon social housing. Ambiente Construído, Porto Alegre, v. 17, n. 3, p. 71-85, jul./set. 2017.

CALDAS, L. R.; SPOSTO, R. M. Emissões de CO2 referentes ao transporte de materiais de construção no Brasil: estudo comparativo entre blocos estruturais cerâmicos e de concreto. Ambiente Construído, Porto Alegre, v. 17, n. 4, p. 91108, out./dez. 2017.

CAMPOS, E. F.; PUNHAGUI, K. R. G.; JOHN, V. M. Emissão de CO2 do Transporte da Madeira Nativa da Amazônia. Ambiente Construído, Porto Alegre, v. 11, n. 2, p. 157-172, abr./jun. 2011.

DEMERTZI, M.; SIERRA-PÉREZ, J.; PAULO, J. A.; ARROJA, L.; DIAS, A. C. Environmental performance of expanded cork slab and granules through life cycle assessment. Journal of Cleaner Production, v. 145, p. 294 – 302, 2017.

EC, 2012. Bioeconomy Strategy, “Innovating for Sustainable Growth: A Bioeconomy for Europe”, COM(2012) 60 Final, Brussels, 2012.

EC. International Reference Life Cycle Data System (ILCD) Handbook – Recommendations for Life Cycle Impact Assessment in the European context. First Edition November 2011. EUR 24571 EN. EC – European Commission. Luxembourg. Publications Office of the European Union; 2011.

ENGLER, R. C.; LACERDA, A. C.; GUIMARÃES, L. H. Análise do ciclo de vida dos paletes: estudo de caso demonstrando a importância do design para a sustentabilidade. Gestão e Tecnologia de Projetos, São Carlos, v. 12, n. 2, p. 41-52. 2017.

ESCAMILLA, E. Z.; HABERT, G.; WOHLMUTH, E. When CO2 counts: Sustainability assessment industrialized bamboo as an alternative for social housing programs in the Philippines. Building Environment, v. 103, p. 44 – 53, 2016.

FEDERAL MINISTRY OF EDUCATION AND RESEARCH (BMBF). Bioeconomy in Germany. Berlin, Germany, 2015.

GARCIA, R.; FREIRE, F. Carbon footprint of particleboard: a comparison between ISO/TS 14067, GHG Protocol, PAS 2050 and Climate Declaration. Journal of Cleaner Production, v. 66, p. 199 – 209, 20104.

INDÚSTRIA BRASILEIRA DE ÁRVORES (IBÁ). Relatório 2017. Brasil, 2018.

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE. Climate Change 2013: the physical science basis, contribution of working group i to the fifth assessment report of the intergovern mental panel on climate change. Cambridge: Cambridge University Press, 2013.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 14040: Environmental Management: life cycle assessment: principles and framework. Geneva, 2006.

IP, K.; MILLER, A. Life cycle greenhouse gas emissions of hemp–lime wall constructions in the UK. Resources, Conservation and Recycling, v. 69, p. 1-9, 2012.

ISLAM, H.; ZHANG, G.; SETUNGE, Z.; BHUIYAN, M. Life cycle assessment of shipping container home: A sustainable construction. Energy and Buildings, v. 128, p. 673 – 685, 2016.

ISLAM, H.; ZHANG, G.; SETUNGE, Z.; BHUIYAN, M. Life cycle assessment of shipping container home: A sustainable construction. Energy and Buildings, v. 128, p. 673 – 685, 2016.

ISO INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 14067: Greenhouse gases – carbon footprint of products – requiements and guidelines for quantification and communication. Geneva, 2014.

JARRE, M.; PETIT-BOIX, A.; PRIEFER, C.; MEYER, R.; LEIPOLD, S. 2020. Transforming the bio-based sector towards a circular economy - What can we learn from wood cascading? Forest Policy Economy, v. 110, 2020.

MINGUET, J. M. Building with Pallets: Pallet Project. Espanha: Monza, 2015.

PACHECO-TORGAL, Fernando et al. Eco-efficient construction and building materials: life cycle assessment (LCA), eco-labelling and case studies. Woodhead Publishing, 2014.

PASSUELLO, A. C. B. et al. Aplicação da Avaliação do Ciclo de Vida na Análise de Impactos Ambientais de Materiais de Construção Inovadores: estudo de caso da pegada de carbono de clínqueres alternativos. Ambiente Construído, Porto Alegre, v. 14, n. 4, p. 7-20, out./dez. 2014.

PAWELZIK, P.; CARUS, M., HOTCHKISS, J.; NARAYAN, R., SELKE, S.; WELLISCH, M.; WEISS, M.; WICKE, B.; PATEL, M. K. Critical aspects in the life cycle assessment (LCA) of bio-based materials – Reviewing methodologies and deriving recommendations. Resources, Conservation and Recycling, v. 73, p. 211-228, 2013.

PITTAU, F.; KRAUSE, F.; LUMIA, G.; HABERT, G. Fast-growing bio-based materials as an opportunity for storing carbon in exterior walls. Building and Environment, v. 129, p. 117-129, 2018.

PRETOT, S.; COLLET, C.; GARNIER, C. Life cycle assessment of a hemp concrete wall: Impact of thickness and coating. Journal of Cleaner Production. v. 72, p. 223 – 231, 2014.

SANTORO, J. F.; KRIPKA, M. Determinação das Emissões de Dióxido de Carbono das Matérias Primas do Concreto Produzido na Região Norte do Rio Grande do Sul. Ambiente Construído, Porto Alegre. v. 16, n. 2, p. 35-49, abr./jun. 2016.

SCARLAT, N.; DALLEMAND, J. F.; MONFORTI-FERRARIO, F.; NITA, V. The role of biomass and bioenergy in a future bioeconomy: Policies and facts, Environmental Development. v.15, 2015, p.3-34

SILVESTRE, J. D.; PARGANA, N.; BRITO, J.; PINHEIRO, M. Insulation Cork Boards—Environmental Life Cycle Assessment of an Organic Construction Material. Materials, v. 9, n. 394, p. 1-16, 2016.

TORNESE, F.; CARRANO, A. L.; THORN, B. K; PAZOUR, J. A.; ROY, D. Carbon footprint analysis of pallet remanufacturing. Journal of Cleaner Production, v. 126, p. 630-542. 2016.

Published

2021-04-19

How to Cite

Caldas, L. R. (2021). CIRCULAR BIOECONOMY AND CLIMATE CHANGE: EVALUATION OF CARBON FOOTPRINT OF REUSED WOODEN PALLETS. ix Sustentável, 7(2), 27–40. https://doi.org/10.29183/2447-3073.MIX2021.v7.n2.27-40