IDENTIFICAÇÃO DE AMEAÇAS E IMPACTOS DA MUDANÇA CLIMÁTICA NA INFRAESTRUTURA DE TRANSPORTE RODOVIÁRIO
DOI:
https://doi.org/10.29183/2447-3073.MIX2022.v8.n3.142-156Palavras-chave:
Mudança climática, Infraestrutura, Transporte rodoviário, Ameaças, e Impactos.Resumo
A infraestrutura de transporte rodoviário é um dos ativos que mais sofre e continuará sofrendo com os impactos da mudança climática, tendo em vista o prosseguimento do aquecimento global. Notadamente, as redes de transporte são essenciais para a economia e a sociedade e sua adaptação à mudança climática é necessária. Nesse sentido, este artigo tem como objetivo identificar os principais impactos de ameaças climáticas na infraestrutura de transporte rodoviário. Durante a revisão da literatura (fundamentada em buscas diretas em bases de dados e em buscas documentais), foi possível identificar cerca de 60 potenciais impactos das 12 ameaças climáticas analisadas, que acarretam prejuízos de diferentes magnitudes que vão desde danos mais superficiais no pavimento até colapso da plataforma rodoviária. Além disso, considerações importantes sobre medidas de adaptação são realizadas com atenção especial à Análise de Risco Climático e uma maior conscientização e engajamento de partes interessadas.
Referências
ADEGOKE, C. W.; SOJOBI, A. O. Climate change impact on infrastructure in Osogbo metropolis, south-west Nigeria. Journal of Emerging Trends in Engineering and Applied Sciences, v. 6, n. 3, p. 156-165, 2015.
ARGYROUDIS, Sotirios A. et al. Fragility of transport assets exposed to multiple hazards: State-of-the-art review toward infrastructural resilience. Reliability Engineering & System Safety, v. 191, p. 106567, 2019. doi:10.1016/j.ress.2019.106567
ARNDT, Channing et al. Climate change, growth and infrastructure investment: the case of Mozambique. Review of Development Economics, v. 16, n. 3, p. 463-475, 2012. doi: 10.1111/j.1467-9361.2012.00674.x
BHAMIDIPATI, Srirama. Simulation framework for asset management in climate-change adaptation of transportation infrastructure. Transportation Research Procedia, v. 8, p. 17-28, 2015. doi:10.1016/j.trpro.2015.06.038
BOLLINGER, L. A. et al. Climate adaptation of interconnected infrastructures: a framework for supporting governance. Regional environmental change, v. 14, n. 3, p. 919-931, 2014. doi:10.1007/s10113-013-0428-4
CÔTÉ, Jean; KONRAD, Jean-Marie. A numerical approach to evaluate the risk of differential surface icing on pavements with insulated sections. Cold regions science and technology, v. 43, n. 3, p. 187-206, 2005. doi:10.1016/j.coldregions.2005.05.004
DAWSON, Andrew. Anticipating and responding to pavement performance as climate changes. In: Climate change, energy, sustainability and pavements. Springer, Berlin, Heidelberg, 2014. p. 127-157. doi:10.1007/978-3-662-44719-2_4
DAWSON, R. J. et al. UK climate change risk assessment evidence report: chapter 4, infrastructure. Report prepared for the Adaptation Sub-Committee of the Committee on Climate Change, London, 2016.
DIKANSKI, Hristo et al. Climate change impacts on railway structures: bridge scour. In: Proceedings of the Institution of Civil Engineers-Engineering Sustainability. Thomas Telford Ltd, 2016. p. 237-248. doi:10.1680/jensu.15.00021
EISENACK, Klaus et al. Adaptation to climate change in the transport sector: a review of actions and actors. Mitigation and Adaptation Strategies for Global Change, v. 17, n. 5, p. 451-469, 2012. doi:10.1007/s11027-011-9336-4
EVANS, Caroline; TSOLAKIS, Dimitris; NAUDÉ, Clifford. Framework to address the climate change impacts on road infrastructure assets and operations. In: ATRF Conference. 2009. Disponível em: https://www.australasiantransportresearchforum.org.au/sites/default/files/2009_Evans_Tsolakis_Naude.pdf Acesso em: 05 maio 2021.
FLETCHER, Christopher G. et al. Projected changes in mid-twenty-first-century extreme maximum pavement temperature in Canada. Journal of Applied Meteorology and Climatology, v. 55, n. 4, p. 961-974, 2016. doi:10.1175/JAMC-D-15-0232.1
GIOVANNETTONE, Jason et al. A statistical approach to mapping flood susceptibility in the Lower Connecticut River Valley Region. Water Resources Research, v. 54, n. 10, p. 7603-7618, 2018. doi:10.1029/2018WR023018
GÜNERALP, Burak; GÜNERALP, İnci; LIU, Ying. Changing global patterns of urban exposure to flood and drought hazards. Global environmental change, v. 31, p. 217-225, 2015. doi:10.1016/j.gloenvcha.2015.01.002
HALL, Jim W. et al. Adaptation of Infrastructure Systems: Background Paper for the Global Commission on Adaptation. Oxford: Environmental Change Institute, University of Oxford. 2019. Disponível em: https://gca.org/wp-content/uploads/2020/12/GCA-Infrastructure-background-paperV11-refs_0.pdf
HEINZ-PETER, Berg. Risks and consequences of weather hazards on railway infrastructure. In: Journal of Polish Safety and Reliability Association Summer Safety and Reliability Seminar. 2017. p. 1-11.
HIRA, Mohammad; CHAI, Gary. Effects of Climate Change on Road Infrastructure and Development of Adaptation Measures. 2015.
HO, E.; GOUGH, W. A. Freeze thaw cycles in Toronto, Canada in a changing climate. Theoretical and Applied Climatology, v. 83, n. 1, p. 203-210, 2006. doi:10.1007/s00704-005-0167-7
HUNT, Alistair; WATKISS, Paul. Climate change impacts and adaptation in cities: a review of the literature. Climatic change, v. 104, n. 1, p. 13-49, 2011. doi:10.1007/s10584-010-9975-6
INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE - IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C.B. et al. (eds.)]. Cambridge & New York, 2014
KALANTARI, Zahra et al. Flood probability quantification for road infrastructure: Data-driven spatial-statistical approach and case study applications. Science of the Total Environment, v. 581, p. 386-398, 2017. doi:10.1016/j.scitotenv.2016.12.147
KNOTT, Jayne F. et al. A framework for Introducing climate-change adaptation in pavement management. Sustainability, v. 11, n. 16, p. 4382, 2019. doi:10.3390/su11164382
KNOTT, Jayne F. et al. Designing a climate-ready coastal road. In Proceedings of the TRB 99th Annual Meeting, Walter E. Washington Convention Center, Washington, DC, 12–16 January 2020. Transportation Research Board (TRB), Washington DC, 2020.
KOETSE, M. J., & RIETVELD, P. The impact of climate change and weather on transport: An overview of empirical findings. Transportation Research Part D: Transport and Environment, v. 14, n. 3, p. 205-221, 2009. doi: 10.1016/j.trd.2008.12.004
LARSEN, Peter H. et al. Estimating future costs for Alaska public infrastructure at risk from climate change. Global Environmental Change, v. 18, n. 3, p. 442-457, 2008. doi:10.1016/j.gloenvcha.2008.03.005
LAMBERT, James H. et al. Climate change influence on priority setting for transportation infrastructure assets. Journal of Infrastructure Systems, v. 19, n. 1, p. 36-46, 2013. doi:10.1061/(ASCE)IS.1943-555X.0000094
LOCATELLI, Bruno. Synergies between adaptation and mitigation in a nutshell. CIFOR, 2011.
MALLICK, Rajib B. et al. Understanding the impact of climate change on pavements with CMIP5, system dynamics and simulation. International Journal of Pavement Engineering, v. 19, n. 8, p. 697-705, 2018. doi:10.1080/10298436.2016.1199880
MALLICK, Rajib B. et al. Use of system dynamics to understand long-term impact of climate change on pavement performance and maintenance cost. Transportation Research Record, v. 2455, n. 1, p. 1-9, 2014. doi:10.3141/2455-01
MCGREGOR, Robyn V.; HASSAN, M.; HAYLEY, D. Climate change impacts and adaptation: Case studies of roads in Northern Canada. In: Proceedings of the 2008 Annual Conference of the Transportation Association of Canada. 2008. Disponível em:http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.513.4025&rep=rep1&type=pdf
MEYER, Michael D. et al. Design standards for US transportation infrastructure: The implications of climate change. 2008.
MITOULIS, Stergios Aristoteles et al. Bridge and transport network resilience–a perspective. In: Proceedings of the Institution of Civil Engineers-Bridge Engineering. Thomas Telford Ltd, 2021. p. 1-12. doi:10.1680/jbren.21.00055
MITSAKIS, Evangelos et al. Optimal allocation of emergency response services for managing disasters. Disaster Prevention and Management, 2014. doi:10.1108/dpm-10-2013-0182
MNDAWE, M. B. et al. Assessment of the effects of climate change on the performance of pavement subgrade. African Journal of Science, Technology, Innovation and Development, v. 7, n. 2, p. 111-115, 2015. doi:10.1080/20421338.2015.1023649
NATIONAL RESEARCH COUNCIL et al. Potential impacts of climate change on US transportation: Special report 290. Transportation Research Board, 2008.
NEMANIŪTĖ-GUŽIENĖ, Jolanta; KAŽYS, Justas. Climate change and Lithuanian roads: impacts, vulnerability and adaptation. In: Environmental engineering: 10th International conference, 27-28 April 2017, Vilnius Gediminas Technical University, Lithuania. VGTU Press, 2017. p. 1-8. doi:10.3846/enviro.2017.138
NEMRY, Françoise et al. Impacts of Climate Change on Transport: A focus on road and rail transport infrastructures. European Commission, Joint Research Centre (JRC), Institute for Prospective Technological Studies (IPTS), 2012.
NG, Adolf KY et al. How is business adapting to climate change impacts appropriately? Insight from the commercial port sector. Journal of Business Ethics, v. 150, n. 4, p. 1029-1047, 2018. doi:10.1007/s10551-016-3179-6
OECD - Economic Co-operation and Development. Climate-resilient Infrastructure. POLICY PERSPECTIVES. 2018. Disponível em: https://www.oecd.org/environment/cc/policy-perspectives-climate-resilient-infrastructure.pdf
O'CONNOR, Margaret Brownjohn. O10: Implementing the International Climate Change Adaption Framework for Road Infrastructure in Queensland (2018-19/2019-20). Climate Change Adaption Framework for TMR. 2020.
PICKETTS, Ian M. et al. Climate change adaptation strategies for transportation infrastructure in Prince George, Canada. Regional Environmental Change, v. 16, n. 4, p. 1109-1120, 2016. doi:10.1007/s10113-015-0828-8
POUSSIN, Jennifer K.; BOTZEN, WJ Wouter; AERTS, Jeroen CJH. Stimulating flood damage mitigation through insurance: an assessment of the French CatNat system. Environmental Hazards, v. 12, n. 3-4, p. 258-277, 2013. doi:10.1080/17477891.2013.832650
PROWSE, Terry D. et al. Implications of climate change for economic development in northern Canada: Energy, resource, and transportation sectors. Ambio, p. 272-281, 2009. doi: 10.1579/0044-7447-38.5.272
QIAO, Yaning et al. Evaluating the effects of climate change on road maintenance intervention strategies and Life-Cycle Costs. Transportation Research Part D: Transport and Environment, v. 41, p. 492-503, 2015. doi:10.1016/j.trd.2015.09.019
QUINN, Andrew D. et al. Adaptation Becoming Business as Usual: A Framework for Climate-Change-Ready Transport Infrastructure. Infrastructures, v. 3, n. 2, p. 10, 2018. doi:10.3390/infrastructures3020010
RATTANACHOT, Wit et al. Adaptation strategies of transport infrastructures to global climate change. Transport Policy, v. 41, p. 159-166, 2015. doi:10.1016/j.tranpol.2015.03.001
REGMI, Madan B.; HANAOKA, Shinya. Impacts of climate change on transport and adaptation in Asia. In: Proceedings of the Eastern Asia Society for Transportation Studies Vol. 7 (The 8th International Conference of Eastern Asia Society for Transportation Studies, 2009). Eastern Asia Society for Transportation Studies, 2009. p. 206-206.
REGMI, Madan B.; HANAOKA, Shinya. A survey on impacts of climate change on road transport infrastructure and adaptation strategies in Asia. Environmental Economics and Policy Studies, v. 13, n. 1, p. 21-41, 2011. doi:10.1007/s10018-010-0002-y
SANTOS, Andrea Souza; RIBEIRO, Suzana Kahn; DE ABREU, Victor Hugo Souza. Addressing Climate Change in Brazil: Is Rio de Janeiro City acting on adaptation strategies?. In: 2020 International Conference and Utility Exhibition on Energy, Environment and Climate Change (ICUE). IEEE, 2020. p. 1-11.
SCHWEIKERT, Amy et al. Climate change and infrastructure impacts: Comparing the impact on roads in ten countries through 2100. Procedia Engineering, v. 78, p. 306-316, 2014a. doi:10.1016/j.proeng.2014.07.072
SCHWEIKERT, Amy et al. The infrastructure planning support system: Analyzing the impact of climate change on road infrastructure and development. Transport Policy, v. 35, p. 146-153, 2014b. doi:10.1016/j.tranpol.2014.05.019
SCHWEIKERT, Amy; ESPINET, Xavier; CHINOWSKY, Paul. The triple bottom line: bringing a sustainability framework to prioritize climate change investments for infrastructure planning. Sustainability Science, v. 13, n. 2, p. 377-391, 2018. doi:10.1007/s11625-017-0431-7
SHARIFI, Ayyoob. Co-benefits and synergies between urban climate change mitigation and adaptation measures: A literature review. Science of the total environment, v. 750, p. 141642, 2021. doi:10.1016/j.scitotenv.2020.141642
SHAO, Zeshen; JENKINS, Graham; OH, Erwin. Assessing the Impacts of Climate Change on Road Infrastructure. International Journal, v. 13, n. 38, p. 120-128, 2017. doi:10.21660/2017.38.72099
SONG, Yongze et al. Segment-based spatial analysis for assessing road infrastructure performance using monitoring observations and remote sensing data. Remote Sensing, v. 10, n. 11, p. 1696, 2018. doi:10.3390/rs10111696
SWARNA, Surya Teja; HOSSAIN, Kamal. Climate Change Impact and Adaptation for Highway Asphalt Pavements: A Literature Review. Canadian Journal of Civil Engineering, n. ja, 2022. doi:10.1139/cjce-2021-0209
TRANSPORTATION ASSOCIATION OF CANADA – TAC. Pavement asset design and management guide. University of Waterloo for the Transportation Association of Canada, Ottawa, 2013.
UNDERWOOD, B. Shane et al. Increased costs to US pavement infrastructure from future temperature rise. Nature Climate Change, v. 7, n. 10, p. 704-707, 2017. doi:10.1038/nclimate3390
VAJJARAPU, Harsha; VERMA, Ashish. Composite adaptability index to evaluate climate change adaptation policies for urban transport. International Journal of Disaster Risk Reduction, v. 58, p. 102205, 2021. doi:10.1016/j.ijdrr.2021.102205
VAJJARAPU, Harsha; VERMA, Ashish; GULZAR, Saqib. Adaptation policy framework for climate change impacts on transportation sector in developing countries. Transportation in Developing Economies, v. 5, n. 1, p. 1-16, 2019. doi:10.1007/s40890-019-0071-y
VAN DER SLUIJS, Jurjen et al. Permafrost terrain dynamics and infrastructure impacts revealed by UAV photogrammetry and thermal imaging. Remote Sensing, v. 10, n. 11, p. 1734, 2018. doi:10.3390/rs10111734
WANG, Tianni et al. Climate change research on transportation systems: Climate risks, adaptation and planning. Transportation Research Part D: Transport and Environment, v. 88, p. 102553, 2020a. doi:10.1016/j.trd.2020.102553
WANG, Tianni et al. How can the UK road system be adapted to the impacts posed by climate change? By creating a climate adaptation framework. Transportation Research Part D: Transport and Environment, v. 77, p. 403-424, 2019. doi:10.1016/j.trd.2019.02.007
WANG, Tianni et al. Impact analysis of climate change on rail systems for adaptation planning: A UK case. Transportation Research Part D: Transport and Environment, v. 83, p. 102324, 2020b. doi:10.1016/j.trd.2020.102324
WORLD BANK. Climate and Disaster Risk Screening - Sector Screening Guidance note Transportation sector [s. l.], 2017. Disponível em: https://climatescreeningtools.worldbank.org/sites/default/files/guidance_note/TRANSPORTATION_Guidance_Note.pdf.
WORLD METEOROLOGICAL ORGANIZATION – WMO. WMO Provisional Statement on the State of the Global Climate in 2019, 2019. Disponível em: https://library.wmo.int/doc_num.php?explnum_id=10108
ZIMMERMAN, Rae; FARIS, Craig. Infrastructure impacts and adaptation challenges. Annals of the New York Academy of Sciences, v. 1196, n. 1, p. 63-86, 2010.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Victor Hugo Souza de Abreu, Filipe Ribeiro, Andrea Souza Santos

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Aviso de Direito Autoral Creative Commons
1. Política para Periódicos de Acesso Livre
Autores que publicam nesta revista concordam com os seguintes termos:
a. Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
b. Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
c. Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto após o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).