ENERGIA EÓLICA AEROTRANSPORTADA: UMA REVISÃO DA TECNOLOGIA

Autores

DOI:

https://doi.org/10.29183/2447-3073.MIX2020.v6.n1.105-121

Palavras-chave:

Energia eólica, Energia eólica aerotransportada, Protótipos, Patentes

Resumo

Energia Eólica Aerotransportada ou Airborne Wind Energy (AWE) é uma tecnologia inovadora de energia renovável que utiliza dispositivos de energia eólica em vez de turbinas eólicas convencionais que aproveitam a energia cinética do vento que sopram em altitudes elevadas acima do solo e são capazes de se manter no ar através de forças aerostáticas ou aerodinâmicas. Com o objetivo de tornar a energia eólica mais barata e viável em um número maior de localidades, esta tecnologia vem sendo alvo de um número crescente de pesquisas nos últimos anos. Este artigo fornece uma revisão das diferentes tecnologias que estão sendo investigadas como uma alternativa para a exploração do fluxo de energia eólica em alta altitude, com ênfase especialmente nos aspectos relacionados aos protótipos desenvolvidos por universidades e empresas, destacando os resultados alcançados.

Biografia do Autor

Anny Key de Souza Mendonça, Universidade Federal de Santa Catarina

Doutora em Engenharia de Produção pela Universidade Federal de Santa Catarina (2017), área de concentração – Gestão de Operações.

Antonio Cezar Bornia, Universidade Federal de Santa Catarina

Doutor em Engenharia de Produção pela Universidade Federal de Santa Catarina (1995), área de concentração – Gestão de Operações.

Referências

Ahmed, M., Hably, A., and Bacha, S. (2012). High altitude wind power systems: A survey on flexible power kites. In 20th International Conference on Electrical Machines, pages 2083–2089, Marseille, France.

Ahrens, U. (2006). Wind-operated power generator. Ahrens, U. (2007). Method and system for converting kinetic energy contained in horizontal flows into useful mechanical energy.

Ahrens, U., Diehl, M., and Schmehl, R., editors (2014a). Airborne Wind Energy. Springer-Verlag Berlin Heidelberg, London.

Ahrens, U., Pieper, B., and Töpfer, C. (2014b). In Ahrens, U., Diehl, M., and Schmehl, R., editors, Airborne Wind Energy, chapter Combining Kites and Rail Technology into a Traction-Based Airborne Wind Energy Plant, pages 437–458. Springer-Verlag Berlin Heidelberg, London.

Altaeros (2015). Clean energy. Technical report, ALTAEROS.

ANEEL (2018). Capacidade de Geração do Brasil. Technical report, Aneel, Brasil.

Archer, C. L. and Caldeira, K. (2009). Global assessment of high-altitude wind power. Energies, 2:307–319.

Archer, C. L. and Jacobson, M. Z. (2005). Evaluation of global wind power. Journal of Geophysical Research, 110.

Argatov, I., Rautakorpi, P., and Silvennoinen, R. (2009). Estimation of the mechanical energy output of the kite wind generator. Renewable Energy, 34(6):1525–1532.

Argatov, I. and Silvennoinen, R. (2010). Energy conversion efficiency of the pumping kite wind generator. Renewable Energy, 35(5):1052–1060.

Bevirt, J. (2009). System and method for generating electrical power using a tethered airborne power generation system.

Bevirt, J., Craig, D. D., Ibara, A. H., Kroo, I., Biddison, G., and Gibboney, J. K. (2008). System and method for airborne cyclically controlled power generation using autorotation.

Bevirt, J. and Peddie, M. (2009). System and method for controlling a tethered flying craft using tether attachment point manipulation.

Bormann, A., Skutnik, S., Gebhardt, C., and Ranneberg, M. (2012). Tethered wing system for wind energy use.

Bryan, W. R., David, H. S., Ken, C., M. Elizabeth, C., David, G. E., Albert, J. G., and Jonathan, F. F. (2007). Harnessing high-altitude wind power. IEEE Transactions On Energy Conversion, 22(1):136–144.

Canale, M., Fagiano, L., Ippolito, M., and Milanese, M. (2006). Control of tethered airfoils for a new class of wind energy generator. 45th IEEE Conference on Decision and Control, pages 4020–4026.

Canale, M., Fagiano, L., and Milanese, M. (2007a). Kitegen project: control as key technology for a quantum leap in wind energy generators. 2007 American Control Conference, 1-13(6):3522–3528.

Canale, M., Fagiano, L., and Milanese, M. (2007b). Power kites for wind energy generation fast predictive control of tethered airfoils. IEEE Control Systems Magazine, 27(6):25–38.

Canale, M., Fagiano, L., and Milanese, M. (2010). High altitude wind energy generation using controlled power kites. IEEE Transactions on Control Systems Technology, 18(2):279–293.

Carnel, L. and Hårklaul, T. (2015). Kitemill, a driver of second-generation wind energy! In Schmehl, R., editor, Book of Abstracts of the International Airborne Wind Energy Conference 2015, page 25. Institutional Repository, Faculty of Aerospace Engineering - Delft University of Technology, Netherlands.

Chaudhari, R. (2015). Electric energy generation by magenn air rotor system (mars). International Journal of Computer Science and Network, 4:314–317.

Cherubini, A., Papini, A., Vertechy, R., and Fontana, M. (2015). Airborne wind energy systems: A review of the technologies. Renewable and Sustainable Energy Reviews, (51):1461–1476.

Creighton, R. and Mizzi, J. V. (2016). Tethered airfoil methods and systems.

De Lellis, M., Mendonça, A. K., Saraiva, R., Trofino, A., and Lezana, A. (2016). Electric power generation in wind farms with pumping kites: An economical analysis. Renewable Energy, 86:163–172.

Diehl, M. (2001). Real-Time Optimization for Large Scale Nonlinear Processes. PhD thesis, Ruprecht-Karls-Universität, Heidelberg, Germany.

Diehl, M. (2018). In Schmehl, R., editor, Airborne Wind Energy -Advances in Technology Development and Research, chapter Foreword, pages vii–x. Springer-Verlag Berlin Heidelberg, London.

E-kite (2018). Te-kite’s first commercial system. Technical report, E-kite. Accessed Online on April 20, 2018.

Fagiano, L. (2009). Control of Tethered Airfoils for High-Altitude Wind Energy Generation. PhD thesis, Politecnico di Torino, Torino, Italy.

Fagiano, L. and Milanese, M. (2011). System for converting wind energy into electrical energy through the flight of power wing profiles tethered to the ground by cables of a fixed length, without passive phases, and with automatic adaptation to wind conditions.

Fagiano, L. and Milanese, M. (2012). Airborne wind energy: an overview. In American Control Conference, pages 3132–3143, Montreal, Canada. IEEE.

Fagiano, L., Milanese, M., and Piga, D. (2010a). High-altitude wind power generation. IEEE Transactions on Energy Conversion, 25(1):168–180.

Fagiano, L., Milanese, M., and Piga, D. (2010b). High-altitude wind power generation. IEEE Transactions on Energy Conversion, 25(1):168 – 180.

Glass, B. W. (2008). Lighter-than-air craft for energy-producing turbines.

GmbH, E. (2018a). Airborne wind energy. Technical report, ENERKITE GmbH. Accessed Online on April 20, 2018.

GmbH, N. (2018b). Generating renewable energy according to the x-wind principle.

Griffith, S., Lynn, P., and Hardham, C. (2007a). Wind power generation.

Griffith, S., Lynn, P., Montague, D., and Hardham, C. (2007b). Bimodal kite system.

Griffith, S., Lynn, P., Montague, D., and Hardham, C. (2008). Faired tether for wind power generation systems.

GWEC (2018). Global wind statistics 2017.

Hornzee-Jones, C. and Hampton, W. (2014a). Kite with controllable trailing edge.

Hornzee-Jones, C. and Hampton, W. (2014b). Winch.

Houska, B. and Diehl, M. (2007). Optimal control for power generating kites. In Proceedings of the European Control Conference 2007, pages 3560–3567, Kos, Greece.

IEA (2013). Technology roadmap: Wind energy. Paris, France. IEA (2015). Energy and climate change - world energy outlook special report. Paris, France.

Ilzhoer, A., Houska, B., and Diehl, M. (2007). Nonlinear mpc of kites under varying wind conditions for a new class of large-scale wind power generators. International Journal of Robust and Nonlinear Control, 17(17):1590–1599.

InsolvenzPortal (2018). Technical report, InsolvenzPortal.

IPCC (2012). Renewable Energy Sources and Climate Change Mitigation Special Report. Technical report, Intergovernmental Panel on Climate Change.

IPCC (2014). Climate change 2014: Mitigation of climate change.

Ippolito, M. (2006). System and process for automatically controlling the flight of power wing airfoils.

Ippolito, M. (2012). Wind energy conversion system by moving on rail modules towed by kites and electrical energy generation process by means of such system.

Ippolito, M. (2015). Schwimmende offshore-infrastruktur zur nutzung von windkraft.

Ippolito, M. and Taddei, F. (2006). Aeolian system comprising power wing profiles and process for producing electric energy.

Ippolito, M. and Taddei, F. (2007). Wind system for converting energy by translating on a rail modules dragged by kites and process for producing electric energy through such system.

JOBYENERGY (2018). More power more often, for less. Technical report, JOBYENERGY.

KITEGEN (2016). Kitegen research. Technical report, KITEGEN, Itália.

KITENERGY (2018). Automatically controlled wing to harvest high-altitude wind energy. Technical report, KITENERGY.

KPS (2018). Technical report, KPS energy. Accessed Online on April 12, 2018.

Kruijff, M. (2017a). The technology of airborne wind energy - part i: Launch & land. Technical report,

Ampyx Power B.V. Accessed Online on April 12, 2018.

Kruijff, M. (2017b). The technology of airborne wind energy - part ii: the drone. Technical report, Ampyx Power B.V. Accessed Online on April 12, 2018.

Kruijff, M. (2017c). The technology of airborne wind energy - part iii safe power. Technical report, Ampyx Power B.V. Accessed Online on April 12, 2018.

Lellis, M. D., Saraiva, R., and Trofino, A. (2016). Airborne wind energy: Automatic flight test.

Lind, D. V. (2014). Radiator and duct configuration on an airborne wind turbine for maximum effectiveness.

Lind, D. V., Niekerk, B. V., and Hardham, C. (2009). Tethered system for power generation.

Loyd, M. (1980). Crosswind kite power. Journal of Energy, 4(3):106–111.

Luchsinger, R., Aregger, D., Bezard, F., Costa, D., Galliot, C., Gohl, F., Heilmann, J., Hesse, H., Houle, C., Wood, T. A., and Smith, R. S. (2018). In Schmehl, R., editor, Airborne Wind Energy - Advances in Technology Development and Research, chapter 24 - Pumping Cycle Kite Power with Twings, pages 603–621. Springer-Verlag Berlin Heidelberg, London.

Makani, P. (2014). Airborne wind turbines.

Mendonça, A. K. S., Vaz, C. R., Lezana, A. R. G.and Anacleto, C. A., and Paladini, E. P. (2017). Comparing patent and scientific literature in airborne wind energy. Sustainability, 9:915–937.

Milanese, M. and Gerlero, L. F. I. (2010). Actuating systems for controlling the flight of a power wing profile for conversion of wind energy into electrical or mechanical energy.

Milanese, M., Milanese, A., and Novara, C. (2006). Automatic kite flight control system.

NTS (2014). Nature technology systems. Technical report, NTS, Germany.

Ockels, W. (2001). Laddermill, a novel concept to exploit the energy in the airspace. Aircraft Design, 4:81–97.

Pardal, T. C. D. and Freire, M. A. B. D. A. (2006). Atmospheric resources explorer.

Pardal, T. C. D. and Silva, P. M. M. D. S. (2011). Airborne platform.

Perkovic, L., Silva, P., Ban, M., Kranjcevic, N., and Duic, N. (2013). Harvesting high altitude wind energy for power production: The concept based on magnus? effect. Applied Energy, (101):151–160.

Power, M. (2018). Magenn power air rotor system. Technical report, Magenn Power Inc.

Read, R. (2018a). In Schmehl, R., editor, Airborne Wind Energy -Advances in Technology Development and Research, chapter Kite Networks for Harvesting Wind Energy, pages 515–537. Springer-Verlag Berlin Heidelberg, London.

Read, R. (2018b). Windswept & interesting make scalable low-carbon, flying wind turbines. Technical report, Windswept.

Roberts, B. W., Shepard, D. H., Caldeira, K., Cannon, M. E., Eccles, D. G., Grenier, A. J., and Freidin, J. F. (2007). Harnessing high-altitude wind power. IEEE Transactions on Energy Conversion, 22(1):136–144.

Ruiterkamp, R. (2012a). Glider for airborne wind energy productions.

Ruiterkamp, R. (2012b). System and method for airborne wind energy production.

Ruiterkamp, R., Salma, V., and Kruij, M. (2015). Update on certification and regulations of airborne wind energy systems - the european case for rigid wings. In Schmehl, R., editor, Book of Abstracts of the International Airborne Wind Energy Conference 2015, page 78. Institutional Repository, Faculty of Aerospace Engineering - Delft University of Technology, Netherlands.

Saraiva, R., Lellis, M., and Trofino, A. (2014). Passive phase design of a pumping kite wind generator. In 19th IFAC World Congress, pages 6764–6769, Cape Town, South Africa. IFAC.

Schmehl, R. (2015a). Airborne Wind Energy Conference: Book of Abstracts. Institutional Repository, Faculty of Aerospace Engineering - Delft University of Technology, Netherlands.

Schmehl, R. (2015b). Welcome to the airborne wind energy conference 2015. In Schmehl, R., editor, Book of Abstracts of the International Airborne Wind Energy Conference 2015, page 4. Institutional Repository, Faculty of Aerospace Engineering - Delft University of Technology, Netherlands.

Schmehl, R., editor (2018). Airborne Wind Energy - Advances in Technology Development and Rese- arch. Springer-Verlag Berlin Heidelberg, London.

Sequoia (2014). Patents and research. Technical report, Sequoia. SKYSAILS (2014). Wind propulsion and high-altitude wind power. Technical report, SKYSAIL, Germany.

SKYWindPower (2016). Flying electric generators. Technical report, SKYWindPower.

STOUGH, A. J. and AULL, M. J. (2016a). Hybrid rolling bridle system for distributing load while permitting freedom of rotation.

STOUGH, A. J. and AULL, M. J. (2016b). Variable cross section tether. Vermillion, C. R., Glass, B. W., and Goessling, A. D. (2011). Systems and methods for attitude control of tethered aerostats.

Vlugt, R. V. D., Peschel, J., and Schmehl, R. (2014). Design and experimental characterization of a pumping kite power system in airborne wind energy. In Ahrens, U., Diehl, M., and Schmehl, R., editors, Airborne Wind Energy, chapter 23, pages 403–425. Springer, London.

Webster, B. (2018). First wind farm to be built powered by kites. Technical report, The Times.

Williams, P., Lansdorp, B., and Ockels, W. (2008). Optimal crosswind towing and power generation with tethered kites. Journal of Guidance Control and Dynamics, 31(1):81–93.

WOO, Y. S. and Woo, C. D. (2014). Medium/large electricity generator equipped with automatically winding and un-winding kite cable mechanism for minimum energy loss.

Wrage, S. and Brabeck, S. (2006). Launch and retrieval arrangement for an aerodynamic profile element and an aerodynamic profile element.

Wrage, S. and Böhm, J. (2004). Placement system for a flying kite-type wind-attacked element in a wind-powered watercraft.

Wrage, S. and Muller, S. (2004). Watercraft comprising a free-flying kite-type wind-attacked element as a wind-powered drive unit.

Zanon, M., Gros, S., Meyers, J., and Diehl, M. (2014). Airborne wind energy: Airfoil-airmass interaction. IFAC PAPERSONLINE, 47(3):5814–5819. 19th World Congress of the International-Federation-of-Automatic-Control (IFAC), Cape Town, SOUTH AFRICA, AUG 24-29, 2014.

Zillmann, U. and Hach, S. (2014). Financing strategies for airborne wind energy. In Ahrens, U., Diehl, M., and Schmehl, R., editors, Airborne Wind Energy, chapter 7, pages 117–137. Springer, London.

Downloads

Publicado

2020-03-23

Como Citar

Mendonça, A. K. de S., & Bornia, A. C. (2020). ENERGIA EÓLICA AEROTRANSPORTADA: UMA REVISÃO DA TECNOLOGIA. IX Sustentável, 6(1), 105–121. https://doi.org/10.29183/2447-3073.MIX2020.v6.n1.105-121