EFECTOS DE LAS CONDICIONES CLIMÁTICAS NO ESTACIONARIAS EN LA INFRAESTRUCTURA DE PAVIMENTOS FLEXIBLES
EFFECTS OF NON-STATIONARY CLIMATIC CONDITIONS ON FLEXIBLE PAVEMENT INFRASTRUCTURE
DOI:
https://doi.org/10.29183/2447-3073.MIX2025.v11.n1.45-67Palabras clave:
Infraestructuras viarias, cambio climático, estrategias de adaptación, resiliencia, evaluación de la sostenibilidad del ciclo de vidaResumen
Las redes viales son vínculos vitales para el transporte de personas y mercancías, que influyen
en el medio ambiente y el desarrollo socioeconómico en todo el mundo. Con presupuestos
restringidos, la gestión sostenible de inventarios masivos de carreteras, para garantizar una
adecuada capacidad de servicio, seguridad y durabilidad, ha sido un gran desafío para las
autoridades de infraestructura. El cambio climático no puede subestimarse, ya que puede
requerir prácticas innovadoras, estrategias de gestión y presupuestos. Este articulo analiza las
implicaciones del cambio climático y las estrategias de adaptación para la infraestructura de
pavimentos flexibles en condiciones climáticas no estacionarias, abordando los siguientes
temas clave: i) Los efectos del tiempo y el clima en el rendimiento estructural del pavimento;
ii) Los cambios más relevantes en el tiempo y el clima que afectan a la infraestructura de
transporte por carretera; iii) Proyecciones de cambios en el tiempo y el clima relevantes para
la infraestructura de transporte por carretera; iv) Impactos potenciales de los cambios
climáticos en la infraestructura de pavimentos en los años futuros; v) Estrategias para adaptar
la infraestructura de pavimentos flexibles en respuesta a un clima cambiante.
Citas
AASHTO, Mechanistic–Empirical Pavement Design Guide: A Manual of Practice. Gainesville, 2008.
Abreu et al. Climate Change Impacts on the Road Transport Infrastructure: A Systematic Review on Adaptation Measures. Sustainability, v. 14, p. 8864, 2022.
ASCE, Infrastructure Report Card, Reston 2021.
ASCE, Adapting Infrastructure and Civil Engineering Practice to a Changing Climate. Reston, 2015.
Asam et al. Climate Change Adaptation Guide for Transportation Systems Management, Operations, and Maintenance, FHWA-HOP-15-026. Washington DC, 2015.
Babashamsi et al. Evaluation of pavement life cycle cost analysis: Review and analysis. International Journal of Pavement Research and Technology, v. 9 (4), p. 241–254, 2016.
Barata et al. Use of Climate Change Projections for Resilience Planning in Rio de Janeiro, Brazil. Frontiers in Sustainable Cities, v. 2, p. 1-10, 2020.
Blaauw et al. Flexible pavement performance and life cycle assessment incorporating climate change impacts. Transportation Research Part D: Transport and Environment, v. 104, p. 103203, 2022.
Chinowsky et al. Climate change: comparative impact on developing and developed countries. Engineering Project Organization Journal, v. 1 (1), p. 67–80, 2011.
CNT, Anuário CNT do Transporte - Estatísticas Consolidadas. Brasília, 2022.
CNT, Somente 12,4% da malha rodoviária brasileira é pavimentada. Brasília, 2018. Available at: https://cnt.org.br/agencia-cnt/somente-12-da-malha-rodoviaria-brasileira-pavimentada (accessed May 27, 2023).
DEFF, National Climate Change Adaptation Strategy Republic of South Africa. Arcadia, 2019.
DTMR, Climate Change Risk and Adaption Assessment Framework for Infrastructure Projects. Brisbane, 2020.
DTMR, Engineering Policy 170 – Climate Change Risk Assessment Methodology. Brisbane, 2020.
EC & EEA, European Climate Adaptation Platform Climate-ADAPT. Copenhagen, 2022.
EC & EEA, European Commission and ICLEI, Buying green! A handbook on green public procurement, 3rd ed. Luxembourg: Publications Office, 2016.
Elshaer & Daniel, Impact of subsurface water on structural performance of inundated flexible pavements. International Journal of Pavement Engineering, v. 20 (8), p. 947-957, 2019.
Espinet et al. Planning resilient roads for the future environment and climate change: Quantifying the vulnerability of the primary transport infrastructure system in Mexico. Transport Policy, v. 50, p. 78–86, 2016.
EU, Directive 2014/24/EU of the European Parliament and of the Council of 26 February 2014 on public procurement and repealing Directive 2004/18/EC. Strasbourg, 2014.
EU, Directive 2014/25/EU of the European Parliament and of the Council of 26 February 2014 on procurement by entities operating in the water, energy, transport and postal services sectors and repealing Directive 2004/17/EC. Strasbourg, 2014.
FHWA, Life-Cycle Cost Analysis. Washington DC, 2023.
Field et al., Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change. Cambridge, 2012.
Galiana et al., National climate change adaptation plan: transportation infra-structures and systems, action 1 Potential impacts of climate change on transportation infrastructures and systems, on their design, maintenance and operation standards, and the need for detailed climate projections. France, 2015.
Harmaeni et al. The effect of temperature changes on mechanistic performance of hotmix asphalt as wearing course with different gradation types, AIP Conference, v. 1977, p. 030026 2018.
Harvey et al., Pavement Life Cycle Assessment Framework, FHWA-HIF-16-014. Urbana, 2016.
Hasan & Tarefder. Development of temperature zone map for mechanistic empirical (ME) pavement design. International Journal of Pavement Research and Technology, v. 11 (1), p. 99–111, 2018.
Hoxha et al. Life cycle assessment of roads: Exploring research trends and harmonization challenges. Science of The Total Environment, v. 759, p. 143506, 2021.
ICF International, Regional Climate Change Effects: Useful Information for Transportation Agencies, DTFH61-05-D-00019, TOPR No. EV0101. Washington DC, 2010.
IPCC, AR6-WGI Interactive Atlas: Regional information. Available at: https://interactive-atlas.ipcc.ch/atlas (accessed February 10, 2023).
IPCC, Climate Change 2014 Synthesis Report Summary for Policymakers. Genebra, 2014.
ISO. ISO 14040 Environmental management - Life cycle assessment - Principles and framework. Genebra, 2006.
ISO, ISO 15686-6 Buildings and constructed assets — Service life planning — Part 6: Procedures for considering envi-ronmental impacts. Genebra, 2004.
Khan et al. Development of a post-flood road maintenance strategy: case study Queensland, Australia, International Journal of Pavement Engineering, v. 18(8), p. 702-713, 2017.
Khan et al. Assessment of flood risk to performance of highway pavements. Proceedings of the Institution of Civil Engineers – Transport, v. 170 (TR6), p. 363–372, 2017.
Knott et al. A Framework for Introducing Climate-Change Adaptation in Pavement Management. Sustainability, v. 11 (16) p. 1-23., 2019.
Knott et al. Seasonal and Long-Term Changes to Pavement Life Caused by Rising Temperatures from Climate Change. Transportation Research Record, v. 2673 (6), p. 267–278, 2019.
Koch, Friedl & Mihalyi. Influence of different LCIA methods on an exemplary scenario analysis from a process development LCA case study. Environment, Development and Sustainability, v. 25, p. 6269–6293, 2023.
La Rovere & Sousa, Estratégia de Adaptação às Mudanças Climáticas da Cidade do Rio de Janeiro. Rio de Janeiro, 2016.
Lu, Tighe & Xie. Impact of flood hazards on pavement performance. International Journal of Pavement Engineering, v. 21 (6), p. 746-752, 2020.
Mallick et al. Development of a methodology and a tool for the assessment of vulnerability of roadways to flood-induced damage. Journal of Flood and Risk Management, v. 10(3), p.301-313, 2017.
Mastrandrea et al., Guidance Note for Lead Authors of the IPCC Fifth Assessment Report on Consistent Treatment of Uncertainties. Genebra, 2010.
Matini, Gulzar & Castorena. Evaluation of Structural Performance of Pavements under Extreme Events: Flooding and Heatwave Case Studies. Transportation Research Record, v. 2676(7), p. 233–248, 2022.
Medina & Motta. Mecânica dos Pavimentos, 3a edição. Rio de Janeiro: Editora Interciência, 2015.
Menezes et al. Mapping human vulnerability to climate change in the Brazilian Amazon: The construction of a municipal vulnerability index. PLOS ONE, v. 13 (2), p. e0190808, 2018.
MI & EPL, PNL 2035 - Plano Nacional de Logística,” Brasília, 2021.
Mills et al. Climate Change Implications for Flexible Pavement Design and Performance in Southern Canada. Journal of Transportation Engineering, v. 135 (10), p. 773–782, 2009.
MT, Transportes 2022. Brasília, 2022.
NASEM, Environmental Engineering for the 21st Century: Addressing Grand Challenges. Washington DC, 2019.
Nemry & Demirel H. Impacts of Climate Change on transport: a focus on road and rail transport infrastructures, EUR 25553 EN. Luxembourg: Publications Office of the European Union; 2012.
NHI, National Highway Institute : Course Description for Introduction to Temperature and Precipitation Projections, FHWA-NHI-142082, web-based Training (WBT), 2023. Available at: https://www.nhi.fhwa.dot.gov/course-search?tab=1&session_no=20140502&session_no=20220819&sf=0&course_no=142082 (accessed February 10, 2023).
Nivedya et al. A framework for the assessment of contribution of base layer performance towards resilience of flexible pavement to flooding. International Journal of Pavement Engineering, v. 21-10, p. 1223-1234, 2020.
NOAA, Climate Models | NOAA Climate.gov. Available at: http://www.climate.gov/maps-data/climate-data-primer/predicting-climate/climate-models (accessed December 22, 2022).
Picardo et al. A Comparative Life Cycle Assessment and Costing of Lighting Systems for Environmental Design and Construction of Sustainable Roads. Buildings, v. 13, p. 983, 2023.
Pörtner et al., Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge and New York, 2022.
Qiao et al. Flexible Pavements and Climate Change: A Comprehensive Review and Implications. Sustainability, v. 12 (3), p. 1057, 2020.
Qiao et al. Examining Effects of Climatic Factors on Flexible Pavement Performance and Service Life. Transportation Research Record, v. 2349 (1), p. 100–107, 2013.
Quintão et al. Social, Environmental, and Health Vulnerability to Climate Change: The Case of the Municipalities of Minas Gerais, Brazil. Journal of Environmental and Public Health, v. 2017, p. e2821343, 2017.
RB, Practical Guidelines on Strategic Climate Change Adaption Planning – Flood Disasters, Ministry of Land, Infrastructure, Transport and Tourism. Japan, 2010.
Santero, Masanetb & Horvath. Life-cycle assessment of pavements Part II: Filling the research gaps. Resources, Conservation and Recycling, v. 55 (9), p. 810–818, 2011.
Schuster et al. Impact of Climate Change on Asphalt Binder Selection in Brazil Using Superpave Performance Grading (PG), presentantion at the Rio Oil & Gas Expo and Conference. Rio de Janeiro, 2022. Available at: https://biblioteca.ibp.org.br/pt-BR/search/43719 (acessed: September o6, 2023).
Schweikert et al. Climate Change and Infrastructure Impacts: Comparing the Impact on Roads in ten Countries through 2100. Procedia Engineering, v. 78, p. 306–316, 2014.
Silva et al. Plano Nacional de Adaptação à Mudança do Clima – Relatório Final de Monitoramento e Avaliação Ciclo 2016-2020, Brasília, 2021.
Silva et al., Plano Nacional de Adaptação à Mudança do Clima – Estratégia Geral – Volume I,” Brasília, 2016.
Silva et al., Plano Nacional de Adaptação à Mudança do Clima – Estratégias Setoriais e Temáticas – Volume II, Brasília, 2016.
Sultana et al. Deterioration of flood affected Queensland roads – An investigative study. International Journal of Pavement Research and Technology, v. 9 (6), p. 424–435, 2016.
Swarna et al. Climate Change Adaptation Strategies for Canadian Asphalt Pavements; Part 1: Adaptation strategies. Journal of Cleaner Production, v. 363, p. 132313, 2022.
Swarna, Hossain & Bernier. Climate change adaptation strategies for Canadian asphalt pavements - Part 2: Life cycle assessment and life cycle cost analysis," Journal of Cleaner Production, v. 370, p. 133355, 2022.
Swarr et al., Environmental life-cycle costing: a code of practice. International Journal of Life Cycle Assessment, p. 389–391, 2011.
Taylor, Philp. Investigating the impact of maintenance regimes on the design life of road pavements in a changing climate and the implications for transport policy. Transport Policy, v 41, p. 117-135, 2015.
Tighe et al. Evaluating Climate Change Impact on Low-Volume Roads in Southern Canada. Transportation Research Record, v. 2053 (1), p. 9–16, 2008.
TRB, Potential Impacts of Climate Change on US Transportation - Special Report 290. Washington, DC, 2008.
UNEP/SETAC. Guidelines for Social Life Cycle Assessment of Products and Organizations. Nairobi, 2009.
UNEP/SETAC, Towards a life cycle sustainability assessment: making informed choices on products. Nairobi, 2011.
Underwood et al. Increased costs to US pavement infrastructure from future temperature rise. Nature Climate Change, v. 7 (10), p. 704–707, 2017.
UN, Transforming Our World: The 2030 Agenda for Sustainable Development, 2015. Available at: https://sdgs.un.org/2030agenda. New York, 2015, accessed September 06, 2024).
Van Dam et al. Towards Sustainable Pavement Systems. A Reference Document - FHWA-HIF-15-002. Washington DC, 2015.
Vommaro, Menezes & Barata. Contributions of municipal vulnerability map of the population of the state of Maranhão (Brazil) to the sustainable development goals. Science of The Total Environment, v. 706, p. 134629, 2020.
Walls & Smith, Life-Cycle Cost Analysis in Pavement Design - In Search of Better Investment Decisions - Pavement Division Interim Technical Bulletin, FHWA-SA-98-079. Washington DC, 1998.
Wuebbles et al. USGCRP, 2017: Climate Science Special Report: Fourth National Climate Assessment, Volume I, US Global Change Research Program. Washington DC, 2017.
Zanetti, Souza Jr & Freitas. A Climate Change Vulnerability Index and Case Study in a Brazilian Coastal City. Sustainability, v. 8 (8), 2016.
Zheng et al. Life-cycle sustainability assessment of pavement maintenance alternatives: Methodology and case study. Journal of Cleaner Production, v. 213, p. 659–672, 2019.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Susan, Mônica, Lélio

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Aviso de Direito Autoral Creative Commons
1. Política para Periódicos de Acesso Livre
Autores que publicam nesta revista concordam com os seguintes termos:
a. Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
b. Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
c. Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto após o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).