FABRICACIÓN ADITIVA Y RECICLAJE DISTRIBUIDO: LOS RESIDUOS COMO MATERIA PRIMA EN EL DISEÑO Y FABRICACIÓN DE OBJETOS UTILITARIOS

ADDITIVE MANUFACTURING AND DISTRIBUTED RECYCLING: WASTE AS RAW MATERIAL IN THE DESIGN AND MANUFACTURE OF UTILITARIAN OBJECTS

Autores/as

DOI:

https://doi.org/10.29183/2447-3073.MIX2024.v10.n1.51-61

Palabras clave:

Fabricación aditiva, Reciclaje, Diseño, Diseño para fabricación aditiva, Sostenibilidad

Resumen

Las primeras décadas del siglo XXI fueron testigo de dos grandes acontecimientos: la inserción de China en el mercado mundial de suministros y la popularización de Internet. Los más diversos segmentos de la industria se vieron afectados por una avalancha de ofertas y precios a la baja de nuevas máquinas y productos, entre ellos las tecnologías de fabricación aditiva. Esta tecnología permite la producción a menor escala y a valores más bajos que los métodos tradicionales de producción de artefactos. Esta conexión, combinada con la reutilización de residuos de la producción local, puede revolucionar las cadenas de suministro y la circularidad en el desarrollo y distribución de objetos. Este trabajo demuestra el desarrollo de un sistema de fabricación aditiva alineado al reciclaje distribuido considerando sus impactos, ventajas, desventajas y posibilidades de aplicación en el escenario brasileño, en términos de sostenibilidad y circularidad de los procesos.

Biografía del autor/a

João Victor Correia de Melo, PUC-Rio - PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

Designer graduado pela UFRJ. Mestre e doutor em Design pela PUC-Rio, trabalhou por anos na indústria moveleira do Rio, especializando-se em materiais naturais. É professor e pesquisador na PUC-Rio onde desenvolve pesquisas sobre biomimética, especialmente bolhas de sabão e suas formas, que já foram apresentadas em eventos como a Rio+20 e publicadas em diversos países mundo afora. É sócio fundador da maré, empresa especializada em upcycling de materiais - como madeira, jeans, alumínio e plástico - que produz relógios, óculos e acessórios por meio da fabricação digital. Durante a pandemia foi um dos responsáveis pelo projeto de EPIs impressos em 3D, capitaneada pela PUC-Rio, distribuindo cerca de 25 mil peças às unidades de saúde do Rio de Janeiro e Brasil. Hoje, é coordenador administrativo do BioDesignLab, laboratório fruto da parceria entre a rede DASA e a PUC-Rio, onde desenvolvem-se pesquisas nas áreas de design e medicina envolvendo realidade virtual, realidade aumentada, manufatura aditiva e bioimpressão de tecidos vivos. É coordenador do projeto NOMAD, núcleo ótimizado para manufatura aditiva distribuida, que visa a reciclagem de materiais plásticos locais por meio da manufatura aditiva e reciclagem distribuida, contribuindo para a redução do descarte local e o retorno desse como produtos que agreguem a comunidade.

LATTES: http://lattes.cnpq.br/5580376703816153

ORCID: https://orcid.org/0000-0002-7929-8596

Citas

ANDERSON, C., (2013). Makers: The New Industrial Revolution. Random House Business, London.

MCDONOUGH, B., BRAUNGART, M. 2002, Cradle to Cradle: Remaking the Way We Make Things. ISBN-10: 0865475873.North Point Press. USA

BAUMERS, M., TUCK, C., BOURELL, D.L., SREENIVASAN, R., HAGUE, R. (2011). Sustainability of additive manufacturing: measuring the energy consumption of the laser sintering process. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 225(12), 2228–2239.

BAUMERS, M., TUCK, C., WILDMAN, R., ASHCROFT, I., ROSAMOND, E., HAGUE, R. (2013). Transparency Built in. Journal of Industrial Ecology, 17(3), 418–431.

BIRTCHNELL, T., & HOYLE, W. (2014). 3D Printing for Development in the Global South: The 3D4D Challenge. Basingstoke: Palgrave Macmillan.

BOGERS, M., HADAR, R., BILBERG. A. (2016). Additive manufacturing for consumer-centric business models: Implications for supply chains in consumer goods manufacturing. Technological Forecasting & Social Change, 102, 225–239.

BYARD, D. J., WOERN, A. L., OAKLEY, R. B., FIEDLER, M. J., SNABES, S. L., & PEARCE, J. M. (2019). Green Fab Lab Applications of Large-Area Waste Polymer-based Additive Manufacturing. Additive Manufacturing, 27, pp. 515-525.

CHANDLER, A.D. (1990). Scale and Scope: The Dynamics of Industrial Capitalism. Cambridge MA: Harvard University Press.

CHAVES, Luís de Gonzaga Mendes, (1971). Minorias e seu estudo no Brasil. Revista de Ciências Sociais, Fortaleza, v. 1, n. 1, p. 149-168

CHEN, D., HEYER, S., IBBOTSON, S., SALONITIS, K., STEINGRÍMSSON, J.G., Thiede, S., (2015). Direct Digital Manufacturing: Definition, Evolution, and Sustainability Implications. Journal of Cleaner Production, 107, 615–625.

DALSGAARD, Peter; HALSKOV, Kim. Reflective design documentation. In: Proceedings of the Designing Interactive Systems Conference. 2012. p. 428-437.

DESPEISSE, M., BAUMERS, M., BROWN, P., CHARNLEY, F., FORD, S. J., GARMULEWICZ, A., ROWLEY, J. (2016). Unlocking value for a circular economy through 3D printing: a research agenda. Technological Forecasting & Social Change, p. 49.

DOS SANTOS, J., BRANCAGLION JUNIOR, A., WERNER JUNIOR, H., & AZEVEDO, S. (2013). Tecnologias 3d: desvendando o passado e modelando o futuro [3d Technologies: unraveling the past and shaping the future]. Brazil: lexikon editora digital.

DOS SANTOS, J., WERNER JUNIOR, H., AZEVEDO, S., & BRANCAGLION JUNIOR, A. (2019). Seen / Unseen. Brazil: rio books.

DOS SANTOS, J. R., CORREIA DE MELO, J. V., FRAJHOF, L., & KAUFFMANN, A. R. (December de 2020). Confronting COVID-19 - The case of PPE and Medical Devices production using Digital Fabrication at PUC-Rio. SDRJ - Strategic Design Journal, p. 14.

GRAEDEL, T.E., Allenby, B.R., (2002). Industrial ecology. Prentice Hall, Englewood Cliffs, NJ, USA.

GUSMÃO, G. (2004). “Rua dos Inventos”, Invention street. A arte da sobrevivência • The art of survival. Rio de Janeiro: IBM.

ILLICH, I. (1976). A Convivencialidade. Lisboa: Publicações Europa-América.

LEARY, M. (2020). Chapter 3 - Digital design for AM. Em M. LEARY, Additive Manufacturing Materials and Technologies: Design for Additive Manufacturing (pp. 33-90). Oxford: Eselvier.

LOVINS, A.B. (1996). Negawatts: Twelve transitions, eight improvements and one distraction. Energy Policy,24(4), 331–343.

KOHTALA, C., HYYSALO, S., (2015). Anticipated environmental sustainability of personal fabrication. Journal of Cleaner Production, 99, 333–344.

KREIGER, M., ANZALONE, G., MULDER, M., GLOVER, A., & PEARCE, J. (27 de Fevereiro de 2013). Distributed Recycling of Post-Consumer Plastic Waste in Rural Areas. MRS Online Proceedings Library, 1492, 101-106.

PETERSEN, E., & PEARCE, J. (2017). Emergence of Home Manufacturing in the Developed World: Return on Investment for Open-Source 3-D Printers. (MDPI, Ed.) Technologies, 5(7), p. 15. doi:10.3390/technologies5010007

TANG, Y., & ZHAO, Y. (18 de Abril de 2016). A survey of the design methods for additive manufacturing to improve functional performance. Rapid Prototyping Journal, p. 21.

ZIMMERMAN, J., Forlizzi, J., & Evenson, S. (2007). Research through design as a method for interaction design research in HCI. Proceedings of the SIGCHI conference on Human factors in computing systems, 493-502.

Publicado

2024-02-08

Cómo citar

Correia de Melo, J. V. (2024). FABRICACIÓN ADITIVA Y RECICLAJE DISTRIBUIDO: LOS RESIDUOS COMO MATERIA PRIMA EN EL DISEÑO Y FABRICACIÓN DE OBJETOS UTILITARIOS: ADDITIVE MANUFACTURING AND DISTRIBUTED RECYCLING: WASTE AS RAW MATERIAL IN THE DESIGN AND MANUFACTURE OF UTILITARIAN OBJECTS . IX Sustentável, 10(1), 51–61. https://doi.org/10.29183/2447-3073.MIX2024.v10.n1.51-61