JARDINES DE LLUVIA: ACTUALIZACIONES DE LA TÉCNICA A PARTIR DE UNA REVISIÓN SISTEMÁTICA

RAIN GARDENS: TECHNIQUE UPDATES BASED ON A SYSTEMATIC REVIEW

Autores/as

DOI:

https://doi.org/10.29183/2447-3073.MIX2023.v9.n5.201-215

Palabras clave:

jardín de lluvia; infraestructura verde; soluciones basadas en la naturaleza; contaminación difusa

Resumen

El proceso de urbanización conduce a la degradación de las aguas urbanas, debido al aumento de la contaminación difusa llevada a los arroyos. Las técnicas de infraestructura verde se han utilizado como una alternativa para que las ciudades controlen la contaminación de los ríos y se adapten al cambio climático. El Jardín de Lluvia destaca por reducir la escorrentía superficial y filtrar la contaminación difusa. A pesar de ser utilizado durante más de 30 años en los EE. UU., todavía es poco conocido en Brasil. Este trabajo tiene como objetivo presentar investigaciones recientes sobre jardines de lluvia y fomentar la difusión de esta práctica en Brasil. Para ello se realizó una revisión sistemática sobre el tema. La búsqueda resultó en 69 artículos, de 11 países diferentes sobre los temas: (1) Costos de instalación y operación; (2) Capacidad de retención de agua; (3) control de la contaminación; (4) Aspectos constructivos y operativos y (5) Factores socioambientales. Las publicaciones más actuales se ocupan más de los costes de mantenimiento de las estructuras, además de los métodos de evaluación de su eficiencia. Más estudios sobre el tema son necesarios, con el fin de mejorar el conocimiento y aumentar la difusión de la técnica.

Biografía del autor/a

Fabio Gondim, INEMA - Instituto de Meio Ambiente e Recursos Hídricos da Bahia

Especialista em Meio Ambiente e Recursos Hídricos. Doutorando em Engenharia Ambiental (Departamento de Engenharia)

ORCID:

https://orcid.org/0000-0001-5688-9142

Alfredo Akira Ohnuma Júnior, Universidade do Estado do Rio de Janeiro - UERJ

Eng Civil formado pela UFSCar - Universidade Federal de São Carlos (2000), Mestrado (2005) e Doutorado em Ciências da Eng Ambiental pela USP / EESC - Universidade de São Paulo (2008), Escola de Eng. de São Carlos, Depto de Hidráulica e Saneamento. É Professor Associado da Universidade do Estado do Rio de Janeiro (UERJ), pelo Depto de Eng Sanitária e do Meio Ambiente. Atua na docência dos cursos de Engenharia Civil e Engenharia Ambiental e Sanitária, do Programa de Pós-Graduação Mestrado Profissional em Eng Ambiental (PEAMB) e Doutorado em Engenharia Ambiental (DEAMB), da UERJ.

http://lattes.cnpq.br/0181633220926313

ORCID: https://orcid.org/0000-0002-0772-9334

 

Marcelo Obraczka, Universidade do Estado do Rio de Janeiro - UERJ

Possui graduação em Engenharia Civil e Sanitária pelo Centro de Estudos da Faculdade de Engenharia da UERJ (1985) e mestrado em Ciência Ambiental pela Universidade Federal Fluminense (2008). Doutorado pelo Programa de Planejamento Energético e Ambiental da COPPE/UFRJ em 2014. Realizou com apoio da CAPES um estágio de doutorado sanduíche na Universidade da Califórnia em Santa Cruz(EUA) em 2012 com foco em planejamento ambiental e gerenciamento costeiro. Foi pesquisador no PPE/COPPE através de uma bolsa do Programa de Pós Doutorado da CAPES em 2014/15.

http://lattes.cnpq.br/5082867211968364

ORCID: https://orcid.org/0000-0002-7322-9223

Citas

AHIABLAME, L., & SHAKYA, R. (2016). Modeling flood reduction effects of low impact development at a watershed scale. Journal of Environmental Management, 171, 81–91. https://doi.org/10.1016/j.jenvman.2016.01.036

ANDERSON, M. J., KURTYCZ, D. F. I., & CLINE, J. R. (2015). Baptisia poisoning: A new and toxic look-alike in the neighborhood. Journal of Emergency Medicine, 48(1), 39–42. https://doi.org/10.1016/j.jemermed.2014.09.037

AUTIXIER, L., MAILHOT, A., BOLDUC, S., MADOUX-HUMERY, A. S., GALARNEAU, M., PRÉVOST, M., & DORNER, S. (2014). Evaluating rain gardens as a method to reduce the impact of sewer overflows in sources of drinking water. Science of the Total Environment, 499, 238–247. https://doi.org/10.1016/j.scitotenv.2014.08.030

BADURA, T., KRKOŠKA LORENCOVÁ, E., FERRINI, S., & VAČKÁŘOVÁ, D. (2021). Public support for urban climate adaptation policy through nature-based solutions in Prague. Landscape and Urban Planning, 215, 15. https://doi.org/10.1016/j.landurbplan.2021.104215

BORTOLINI, L., & ZANIN, G. (2018). Hydrological behaviour of rain gardens and plant suitability: A study in the Veneto plain (north-eastern Italy) conditions. Urban Forestry and Urban Greening, 34(August 2017), 121–133. https://doi.org/10.1016/j.ufug.2018.06.007

BROWN, R. A., & HUNT, W. F. (2011). Impacts of Media Depth on Effluent Water Quality and Hydrologic Performance of Undersized Bioretention Cells. Journal of Irrigation and Drainage Engineering, 137(3), 132–143. https://doi.org/10.1061/(asce)ir.1943-4774.0000167

BUZZARD, V., GIL-LOAIZA, J., GRAF GRACHET, N., TALKINGTON, H., YOUNGERMAN, C., TFAILY, M. M., & MEREDITH, L. K. (2021). Green infrastructure influences soil health: Biological divergence one year after installation. Science of the Total Environment, 801. https://doi.org/10.1016/j.scitotenv.2021.149644

CARSTENS, D., & AMER, R. (2019). Spatio-temporal analysis of urban changes and surface water quality. Journal of Hydrology, 569(August 2018), 720–734. https://doi.org/10.1016/j.jhydrol.2018.12.033

CHAFFIN, B. C., SHUSTER, W. D., GARMESTANI, A. S., FURIO, B., ALBRO, S. L., GARDINER, M., SPRING, M. L., & GREEN, O. O. (2016). A tale of two rain gardens: Barriers and bridges to adaptive management of urban stormwater in Cleveland, Ohio. Journal of Environmental Management, 183, 431–441. https://doi.org/10.1016/j.jenvman.2016.06.025

CHAN, F. K. S., GRIFFITHS, J. A., HIGGITT, D., XU, S., ZHU, F., TANG, Y. T., XU, Y., & THORNE, C. R. (2018). “Sponge City” in China—A breakthrough of planning and flood risk management in the urban context. Land Use Policy, 76(March), 772–778. https://doi.org/10.1016/j.landusepol.2018.03.005

CHANDRASENA, G. I., DELETIC, A., & MCCARTHY, D. T. (2016). Biofiltration for stormwater harvesting: Comparison of Campylobacter spp. and Escherichia coli removal under normal and challenging operational conditions. Journal of Hydrology, 537, 248–259. https://doi.org/10.1016/j.jhydrol.2016.03.044

CHURCH, S. P. (2015). Exploring Green Streets and rain gardens as instances of small scale nature and environmental learning tools. Landscape and Urban Planning, 134, 229–240. https://doi.org/10.1016/j.landurbplan.2014.10.021

COLEMAN, S., HURLEY, S., RIZZO, D., KOLIBA, C., & ZIA, A. (2018). From the household to watershed: A cross-scale analysis of residential intention to adopt green stormwater infrastructure. Landscape and Urban Planning, 180(September), 195–206. https://doi.org/10.1016/j.landurbplan.2018.09.005

CUI, L., RUPPRECHT, C. D. D., & SHIBATA, S. (2021). Climate-responsive green-space design inspired by traditional gardens: Microclimate and human thermal comfort of Japanese gardens. Sustainability (Switzerland), 13(5), 1–23. https://doi.org/10.3390/su13052736

DALL’ARA, E., MAINO, E., GATTA, G., TORREGGIANI, D., & TASSINARI, P. (2019). Green Mobility Infrastructures. A landscape approach for roundabouts’ gardens applied to an Italian case study. Urban Forestry and Urban Greening, 37(July 2017), 109–125. https://doi.org/10.1016/j.ufug.2018.03.011

DER. (1999). Low-Impact Development Design Strategies An Integrated Design Approach Low-Impact Development : An Integrated Design Approach (Número June). Department of Environment Resource.

DER - Department of Environmental Resources. (2007). Bioretention Manual, Prince George’s County, Maryland. In Environmental Services Division Department of Environmental Resources.

DIETZ, M. E., & CLAUSEN, J. C. (2006). Saturation to improve pollutant retention in a rain garden. Environmental Science and Technology, 40(4), 1335–1340. https://doi.org/10.1021/es051644f

DING, L., REN, X., GU, R., & CHE, Y. (2019). Implementation of the “sponge city” development plan in China: An evaluation of public willingness to pay for the life-cycle maintenance of its facilities. Cities, 93(500), 13–30. https://doi.org/10.1016/j.cities.2019.04.007

EBRAHIMIAN, A., WADZUK, B., & TRAVER, R. (2019). Evapotranspiration in green stormwater infrastructure systems. Science of the Total Environment, 688, 797–810. https://doi.org/10.1016/j.scitotenv.2019.06.256

FAJARDO-HERRERA, R. J., VALDELAMAR-VILLEGAS, J. C., & MOUTHON BELLO, J. (2019). A Rain Garden for Nitrogen Removal from Storm Runoff in Tropical Cities. Revista de Ciencias Ambientales, 53(2), 132–146. https://www.revistas.una.ac.cr/index.php/ambientales/article/view/12097

FLYNN, K. M., & TRAVER, R. G. (2013). Green infrastructure life cycle assessment: A bio-infiltration case study. Ecological Engineering, 55, 9–22. https://doi.org/10.1016/j.ecoleng.2013.01.004

FOWDAR, H., PAYNE, E., DELETIC, A., ZHANG, K., & MCCARTHY, D. (2022). Advancing the Sponge City Agenda: Evaluation of 22 plant species across a broad range of life forms for stormwater management. Ecological Engineering, 175(December 2021), 11. https://doi.org/10.1016/j.ecoleng.2021.106501

GAO, J., LI, J., LI, Y., XIA, J., & LV, P. (2021). A Distribution Optimization Method of Typical LID Facilities for Sponge City Construction. Ecohydrology and Hydrobiology, 21(1), 13–22. https://doi.org/10.1016/j.ecohyd.2020.09.003

GÉHÉNIAU, N., FUAMBA, M., I, MAHAUT, V., GENDRON, M. R., & DUGUÉ, M. (2015). Monitoring of a Rain Garden in Cold Climate: Case Study of a Parking Lot near Montréal. Journal of Irrigation and Drainage Engineering, 141(6), 04014073. https://doi.org/10.1061/(asce)ir.1943-4774.0000836

GU, C., COCKERILL, K., ANDERSON, W. P., SHEPHERD, F., GROOTHUIS, P. A., MOHR, T. M., WHITEHEAD, J. C., RUSSO, A. A., & ZHANG, C. (2019). Modeling effects of low impact development on road salt transport at watershed scale. Journal of Hydrology, 574(April), 1164–1175. https://doi.org/10.1016/j.jhydrol.2019.04.079

GUO, C., LI, J., LI, H., & LI, Y. (2019). Influences of stormwater concentration infiltration on soil nitrogen, phosphorus, TOC and their relations with enzyme activity in rain garden. Chemosphere, 233, 207–215. https://doi.org/10.1016/j.chemosphere.2019.05.236

GUO, C., LI, J., LI, H., ZHANG, B., MA, M., & LI, F. (2018). Seven-year running effect evaluation and fate analysis of rain gardens in Xi’an, Northwest China. Water (Switzerland), 10(7). https://doi.org/10.3390/w10070944

GUO, J. C. Y., & LUU, T. M. (2015). Operation of Cap Orifice in a Rain Garden. Journal of Hydrologic Engineering, 20(10), 06015002. https://doi.org/10.1061/(asce)he.1943-5584.0001184

HAN, R., LI, J., LI, Y., XIA, J., & GAO, X. (2021). Comprehensive benefits of different application scales of sponge facilities in urban built areas of northwest China. Ecohydrology and Hydrobiology, 21(3), 516–528. https://doi.org/10.1016/j.ecohyd.2021.08.008

HEIDARI, B., SCHMIDT, A. R., & MINSKER, B. (2022). Cost/benefit assessment of green infrastructure: Spatial scale effects on uncertainty and sensitivity. Journal of Environmental Management, 302(PA), 114009. https://doi.org/10.1016/j.jenvman.2021.114009

HONG, J., GERONIMO, F. K., CHOI, H., & KIM, L. H. (2018). Impacts of nonpoint source pollutants on microbial community in rain gardens. Chemosphere, 209, 20–27. https://doi.org/10.1016/j.chemosphere.2018.06.062

HOOVER, F. A., PRICE, J. I., & HOPTON, M. E. (2020). Examining the effects of green infrastructure on residential sales prices in Omaha, Nebraska. Urban Forestry and Urban Greening, 54(October 2019), 126778. https://doi.org/10.1016/j.ufug.2020.126778

HUA, P., YANG, W., QI, X., JIANG, S., XIE, J., GU, X., LI, H., ZHANG, J., & KREBS, P. (2020). Evaluating the effect of urban flooding reduction strategies in response to design rainfall and low impact development. Journal of Cleaner Production, 242, 118515. https://doi.org/10.1016/j.jclepro.2019.118515

JIA, Z., TANG, S., LUO, W., LI, S., & ZHOU, M. (2016). Small scale green infrastructure design to meet different urban hydrological criteria. Journal of Environmental Management, 171, 92–100. https://doi.org/10.1016/j.jenvman.2016.01.016

JOHNSTON, M. R., BALSTER, N. J., & THOMPSON, A. M. (2020). Vegetation alters soil water drainage and retention of replicate rain gardens. Water (Switzerland), 12(11), 1–23. https://doi.org/10.3390/w12113151

KARCZMARCZYK, A., & KAMINSKA, M. (2020). Phosphorus leaching from substrates commonly used in rain gardens. E3S Web of Conferences, 171, 1–5. https://doi.org/10.1051/e3sconf/202017101003

KAYKHOSRAVI, S., KHAN, U. T., & JADIDI, M. A. (2022). A simplified geospatial model to rank LID solutions for urban runoff management. Science of the Total Environment, 831(March), 14. https://doi.org/10.1016/j.scitotenv.2022.154937

KHAN, U. T., VALEO, C., CHU, A., & VAN DUIN, B. (2012a). Bioretention cell efficacy in cold climates: Part 1 - hydrologic performance. Canadian Journal of Civil Engineering, 39(11), 1210–1221. https://doi.org/10.1139/l2012-110

KHAN, U. T., VALEO, C., CHU, A., & VAN DUIN, B. (2012b). Bioretention cell efficacy in cold climates: Part 2 - water quality performance. Canadian Journal of Civil Engineering, 39(11), 1222–1233. https://doi.org/10.1139/l2012-111

LAW, E. P., DIEMONT, S. A. W., & TOLAND, T. R. (2017). A sustainability comparison of green infrastructure interventions using emergy evaluation. Journal of Cleaner Production, 145, 374–385. https://doi.org/10.1016/j.jclepro.2016.12.039

LI, F., CHEN, J., ENGEL, B. A., LIU, Y., WANG, S., & SUN, H. (2021). Assessing the effectiveness and cost efficiency of green infrastructure practices on surface runoff reduction at an urban watershed in China. Water (Switzerland), 13(1). https://doi.org/10.3390/w13010024

LIM, H. S., & LU, X. X. (2016). Sustainable urban stormwater management in the tropics: An evaluation of Singapore’s ABC Waters Program. Journal of Hydrology, 538, 842–862. https://doi.org/10.1016/j.jhydrol.2016.04.063

LIU, K., LI, J., XIA, J., GAO, X., GAO, J., & JIANG, C. (2022). Study on LID Facilities Comprehensive Effect Evaluation : A case in Campus. Ecohydrology & Hydrobiology, xxxx. https://doi.org/10.1016/j.ecohyd.2022.04.001

MA, Y., NALL, J., & O’BANNON, D. (2018). Assessment of Orifice-Controlled Flow Monitoring Device for Rain Garden Performance. Journal of Sustainable Water in the Built Environment, 4(2), 05018002. https://doi.org/10.1061/jswbay.0000855

Management Environmental Services Sustainable - MESS. (2005). NE Siskiyou Green Street Project. https://www.portlandoregon.gov/bes/article/78299

MANIQUIZ-REDILLAS, M. C., & KIM, L. H. (2016). Evaluation of the capability of low-impact development practices for the removal of heavy metal from urban stormwater runoff. Environmental Technology (United Kingdom), 37(18), 2265–2272. https://doi.org/10.1080/09593330.2016.1147610

MEHRING, A. S., HATT, B. E., KRAIKITTIKUN, D., ORELO, B. D., RIPPY, M. A., GRANT, S. B., GONZALEZ, J. P., JIANG, S. C., AMBROSE, R. F., & LEVIN, L. A. (2016). Soil invertebrates in Australian rain gardens and their potential roles in storage and processing of nitrogen. Ecological Engineering, 97, 138–143. https://doi.org/10.1016/j.ecoleng.2016.09.005

MELO, TA, COUTINHO, A, CABRAL, J. J., ANTÔNIO C. D. ANTONINO, & CIRILO, J. A. (2014). Jardim de chuva: sistema de biorretenção para o manejo das água pluviais urbanas. Ambiente Construído, 14(4), 147–165.

MENG, T., & HSU, D. (2019). Stated preferences for smart green infrastructure in stormwater management. Landscape and Urban Planning, 187(March), 1–10. https://doi.org/10.1016/j.landurbplan.2019.03.002

MORASH, J., WRIGHT, A., LEBLEU, C., MEDER, A., KESSLER, R., BRANTLEY, E., & HOWE, J. (2019). Increasing sustainability of residential areas using rain gardens to improve pollutant capture, biodiversity and ecosystem resilience. Sustainability (Switzerland), 11(12). https://doi.org/10.3390/SU11123269

NICHOLS, W., WELKER, A., TRAVER, R., & TU, M. “PETER”. (2021). Modeling Seasonal Performance of Operational Urban Rain Garden Using HYDRUS-1D. Journal of Sustainable Water in the Built Environment, 7(3), 04021005. https://doi.org/10.1061/jswbay.0000941

OBWB. (2021). Slow it. Spread it. Sink it! (Second Edi). Okanaguan Basin Water Board. www.okwaterwise.ca

PAULIN, M., REMME, R. P., & DE NIJS, T. (2019). Amsterdam’s Green Infrastructure: Valuing Nature’s Contributions to People. RIVM Letter report 2019-0021, 79.

PENNINO, M. J., MCDONALD, R. I., & JAFFE, P. R. (2016). Watershed-scale impacts of stormwater green infrastructure on hydrology, nutrient fluxes, and combined sewer overflows in the mid-Atlantic region. Science of the Total Environment, 565, 1044–1053. https://doi.org/10.1016/j.scitotenv.2016.05.101

PERALES-MOMPARLER, S., ANDRÉS-DOMÉNECH, I., HERNÁNDEZ-CRESPO, C., VALLÉS-MORÁN, F., MARTÍN, M., ESCUDER-BUENO, I., & ANDREU, J. (2017). The role of monitoring sustainable drainage systems for promoting transition towards regenerative urban built environments: a case study in the Valencian region, Spain. Journal of Cleaner Production, 163, 113–124. https://doi.org/10.1016/j.jclepro.2016.05.153

QIN, Y. (2020). Urban flooding mitigation techniques: A systematic review and future studies. Water (Switzerland), 12(12). https://doi.org/10.3390/w12123579

RAINEY, W., MCHALE, M., & ARABI, M. (2022). Characterization of co-benefits of Green stormwater infrastructure across ecohydrologic regions in the United States. Urban Forestry & Urban Greening, 70(February), 127514. https://doi.org/10.1016/j.ufug.2022.127514

REIS, R., & ILHA, M. (2014). Comparação de desempenho hidrológico de sistemas de infiltração de água de chuva: poço de infiltração e jardim de chuva. Ambiente Construído, 14(2), 79–90.

ROSENBERGER, L., LEANDRO, J., PAULEIT, S., & ERLWEIN, S. (2021). Sustainable stormwater management under the impact of climate change and urban densification. Journal of Hydrology, 596, 11. https://doi.org/10.1016/J.JHYDROL.2021.126137

ROY, A. H., RHEA, L. K., MAYER, A. L., SHUSTER, W. D., BEAULIEU, J. J., HOPTON, M. E., MORRISON, M. A., & ST AMAND, A. (2014). How much is enough? Minimal responses of water quality and stream biota to partial retrofit stormwater management in a suburban neighborhood. PLoS ONE, 9(1), 1–14. https://doi.org/10.1371/journal.pone.0085011

SHAFIQUE, M., KIM, R., & RAFIQ, M. (2018). Green roof benefits, opportunities and challenges – A review. Renewable and Sustainable Energy Reviews, 90(March), 757–773. https://doi.org/10.1016/j.rser.2018.04.006

SHIN, D. W., & MCCANN, L. (2018). Enhancing Adoption Studies: The Case of Residential Stormwater Management Practices in the Midwest. Agricultural and Resource Economics Review, 47(1), 32–65. https://doi.org/10.1017/age.2017.3

SILVA, G. N. DA;, ALVES, L. D., SANTOS, I. E. DOS;, BILA, D. M., JÚNIOR, A. A. O., & CORRÊA, S. M. (2020). An assessment of atmospheric deposition of metals and the physico - chemical parameters of a rainwater harvesting system in Rio de Janeiro Brazil, by means of statistical multivariate analysis. Revista Ambiente e Agua, 15(4). https://doi.org/10.4136

SIWIEC, E., ERLANDSEN, A. M., & VENNEMO, H. (2018). City Greening by Rain Gardens - Costs and Benefits. Ochrona Srodowiska i Zasobow Naturalnych, 29(1), 1–5. https://doi.org/10.2478/oszn-2018-0001

SØBERG, L. C., VIKLANDER, M., & BLECKEN, G. T. (2017). Do salt and low temperature impair metal treatment in stormwater bioretention cells with or without a submerged zone? Science of the Total Environment, 579, 1588–1599. https://doi.org/10.1016/j.scitotenv.2016.11.179

SONG, C. (2022). Application of nature-based measures in China’s sponge city initiative: Current trends and perspectives. Nature-Based Solutions, 2(December 2021), 100010. https://doi.org/10.1016/j.nbsj.2022.100010

STOBBELAAR, D. J., VAN DER KNAAP, W., & SPIJKER, J. (2022). Transformation towards Green Cities: Key Conditions to Accelerate Change. Sustainability (Switzerland), 14(11), 1–16. https://doi.org/10.3390/su14116410

TARGA, M. DOS S., BATISTA, G. T., DINIZ, H. N., DIAS, N. W., & MATOS, F. C. DE. (2012). Urbanização e escoamento superficial na bacia hidrográfica do Igarapé Tucunduba, Belém, PA, Brasil. Revista Ambiente e Agua, 7(2), 120–142. https://doi.org/10.4136/1980-993X

TIRPAK, R. A., AFROOZ, A. N., WINSTON, R. J., VALENCA, R., SCHIFF, K., & MOHANTY, S. K. (2021). Conventional and amended bioretention soil media for targeted pollutant treatment: A critical review to guide the state of the practice. Water Research, 189, 17. https://doi.org/10.1016/j.watres.2020.116648

UACDC. (2010). LID - Low Impact Development: a design manual for urban areas. In University of Arkansas Press (Vol. 1). University of Arkansas Press. https://doi.org/10.4324/9780429281235-2

URETA, J., MOTALLEBI, M., SCARONI, A. E., LOVELACE, S., & URETA, J. C. (2021). Understanding the public’s behavior in adopting green stormwater infrastructure. Sustainable Cities and Society, 69(March), 102815. https://doi.org/10.1016/j.scs.2021.102815

VALINSKI, N. A., & CHANDLER, D. G. (2015). Infiltration performance of engineered surfaces commonly used for distributed stormwater management. Journal of Environmental Management, 160, 297–305. https://doi.org/10.1016/j.jenvman.2015.06.032

WANG, H., SUN, Y., ZHANG, L., WANG, W., & GUAN, Y. (2021). Enhanced nitrogen removal and mitigation of nitrous oxide emission potential in a lab-scale rain garden with internal water storage. Journal of Water Process Engineering, 42, 9. https://doi.org/10.1016/j.jwpe.2021.102147

WANG, J., CHUA, L. H. C., & SHANAHAN, P. (2019). Hydrological modeling and field validation of a bioretention basin. Journal of Environmental Management, 240(November 2018), 149–159. https://doi.org/10.1016/j.jenvman.2019.03.090

WANG, R., ZHANG, X., & LI, M. H. (2019). Predicting bioretention pollutant removal efficiency with design features: A data-driven approach. Journal of Environmental Management, 242(April), 403–414. https://doi.org/10.1016/j.jenvman.2019.04.064

WILFONG, M. T., CASEY, R. E., & OWNBY, D. R. (2021). Performance of commercially available soil amendments for enhanced Cu attenuation in bioretention media. Journal of Environmental Management, 295, 9. https://doi.org/10.1016/j.jenvman.2021.113047

WILKERSON, B., ROMANENKO, E., & BARTON, D. N. (2022). Modeling reverse auction-based subsidies and stormwater fee policies for Low Impact Development (LID) adoption: a system dynamics analysis. Sustainable Cities and Society, 79(December 2021), 18. https://doi.org/10.1016/j.scs.2021.103602

XU, C., TANG, T., JIA, H., XU, M., XU, T., LIU, Z., LONG, Y., & ZHANG, R. (2019). Benefits of coupled green and grey infrastructure systems: Evidence based on analytic hierarchy process and life cycle costing. Resources, Conservation and Recycling, 151(April), 1–10. https://doi.org/10.1016/j.resconrec.2019.104478

YUAN, J., & DUNNETT, N. (2018). Plant selection for rain gardens: Response to simulated cyclical flooding of 15 perennial species. Urban Forestry and Urban Greening, 35(January), 57–65. https://doi.org/10.1016/j.ufug.2018.08.005

YUE, C., LI, L. Y., & JOHNSTON, C. (2018). Exploratory study on modification of sludge-based activated carbon for nutrient removal from stormwater runoff. Journal of Environmental Management, 226(July), 37–45. https://doi.org/10.1016/j.jenvman.2018.07.089

ZHANG, K., DELETIC, A., PAGE, D., & MCCARTHY, D. T. (2015). Surrogates for herbicide removal in stormwater biofilters. Water Research, 81, 64–71. https://doi.org/10.1016/j.watres.2015.05.043

ZHANG, Z., LI, J., JIANG, C., LI, Y., & ZHANG, J. (2022). Impact of nutrient removal on microbial community in bioretention facilities with different underlying types/built times at field scale. Ecological Engineering, 176(June 2021), 106542. https://doi.org/10.1016/j.ecoleng.2022.106542

Publicado

2023-10-10

Cómo citar

Gondim, F., Ohnuma Júnior, A. A., & Obraczka, M. (2023). JARDINES DE LLUVIA: ACTUALIZACIONES DE LA TÉCNICA A PARTIR DE UNA REVISIÓN SISTEMÁTICA: RAIN GARDENS: TECHNIQUE UPDATES BASED ON A SYSTEMATIC REVIEW. IX Sustentável, 9(5), 201–215. https://doi.org/10.29183/2447-3073.MIX2023.v9.n5.201-215