ACV DE MATERIALES CEMENTANTES SUPLEMENTARIOS Y ÁRIDOS RECICLADOS: UNA REVISIÓN SISTEMÁTICA

LCA OF SUPPLEMENTARY CEMENTITIOUS MATERIALS AND RECYCLED AGREGGATES: A SYSTEMATIC REVIEW

Autores/as

  • Lidianne do Nascimento Farias Universidade Federal do Rio de Janeiro - UFRJ
  • Joaquin Humberto Aquino Rocha Universidade Federal do Rio de Janeiro - UFRJ
  • Lucas Rosse Caldas Universidade Federal do Rio de Janeiro - UFRJ
  • Romildo Dias Toledo Filho Universidade Federal do Rio de Janeiro - UFRJ

DOI:

https://doi.org/10.29183/2447-3073.MIX2023.v9.n3.67-81

Palabras clave:

Impactos ambientales, Ciclo de vida, Morteros

Resumen

Este estudio tiene como objetivo realizar una Revisión Sistemática de la Literatura (RSL) sobre la evaluación de impactos ambientales derivados del uso de Materiales Suplementarios de Cemento (MSC) y Agregado Reciclado (AR) en
materiales de construcción, a través de la metodología de Evaluación del Ciclo de Vida (ECV). La metodología consistió
en la búsqueda de documentos científicos sobre ECV para la evaluación de hormigones y morteros que utilizan MSC y AR, en las bases de datos Scopus y Web of Science, de 2015 a 2021. Los resultados muestran que los estudios adoptan una frontera del sistema cuna para la puerta, indicándose que es la más representativa. Para realizar la ECV se utilizan datos secundarios, principalmente bases de datos (Ecoinvent y ELCD). El Potencial de Calentamiento Global es la categoría de impacto común, seguida por el Potencial de Agotamiento Abiótico y el Potencial de Acidificación. Los métodos utilizados cuantifican únicamente los efectos intermedios de las categorías de impacto; este paso es asistido por los programas Simapro y OpenLCA, preferencialmente. Los estudios han demostrado que el uso de MSC y AR pueden reducir los impactos ambientales de los hormigones y morteros evaluados.

Biografía del autor/a

Lidianne do Nascimento Farias, Universidade Federal do Rio de Janeiro - UFRJ

Doutoranda em Engenharia Civil - COPPE/UFRJ

Joaquin Humberto Aquino Rocha, Universidade Federal do Rio de Janeiro - UFRJ

Doutorando em Engenharia Civil - COPPE/UFRJ

Lucas Rosse Caldas, Universidade Federal do Rio de Janeiro - UFRJ

Professor da Faculdade de Arquitetura e Urbanismo - FAU/UFRJ

Romildo Dias Toledo Filho, Universidade Federal do Rio de Janeiro - UFRJ

Professor do Programa de Engenharia Civil - PEC/COPPE/UFRJ

Citas

Associação Brasileira de Empresas de Limpeza Pública e Resíduos Especiais – ABRELPE. Panorama dos resíduos sólidos no Brasil 2020. ABRELPE, São Paulo, 2020.

ANASTASIOU, E. K.; LIAPIS, A.; PAPAYIANNI, I. Comparative life cycle assessment of concrete road pavements using industrial by-products as alternative materials. Resources, Conservation and Recycling, v. 101, p. 1–8, 2015.

ARRIGONI, A. et al. Rammed Earth incorporating Recycled Concrete Aggregate: a sustainable, resistant and breathable construction solution. Resources, Conservation and Recycling, v. 137, n. May, p. 11–20, 2018.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS – ABNT. NBR ISO 14040: Gestão Ambiental - Avaliação do Ciclo de Vida - Princípios e Estrutura. Rio de Janeiro, 2009.

BORGHI, G.; PANTINI, S.; RIGAMONTI, L. Life cycle assessment of non-hazardous Construction and Demolition Waste (CDW) management in Lombardy Region (Italy). Journal of Cleaner Production, v. 184, p. 815–825, 2018.

BÖSCH, M.; HELLWEG, S. Identifying improvement potentials in cement production with life cycle assessment. Environmental Science & Technology, v. 44, n. 23, p. 9143-9149, 2010. Doi: 10.1021/es100771k

BRAGA, A. M.; SILVESTRE, J. D.; DE BRITO, J. Compared environmental and economic impact from cradle to gate of concrete with natural and recycled coarse aggregates. Journal of Cleaner Production, v. 162, p. 529–543, 2017.

CALDAS, L. R. et al. Environmental impact assessment of wood bio-concretes: Evaluation of the influence of different supplementary cementitious materials. Construction and Building Materials, v. 268, 2021.

CHEN, C. et al. LCA allocation procedure used as an incitative method for waste recycling: an application to mineral additions in concrete. Resources, Conservation and Recycling, v. 54, n. 12, p. 1231–1240, 2010. Doi: 10.1016/j.resconrec.2010.04.001

COLANGELO, F.; FORCINA, A.; FARINA, I.; PETRILLO, A. Life cycle assessment (LCA) of different kinds of concrete containing waste for sustainable construction. Buildings, v. 8, n. 5, 2018. Doi: 10.3390/buildings8050070

COLLINS, F. Inclusion of carbonation during the life cycle of built and recycled concrete: influence on their carbon footprint. The International Journal of Life Cycle Assessment, v. 15, p. 549-556, 2010. Doi: 10.1007/s11367-010-0191-4

DABOUS, S. A.; FEROZ, S. Condition monitoring of bridges with non-contact testing technologies. Automation in Construction, v. 116, 103224, 2020. Doi: 10.1016/j.autcon.2020.103224

De LARRIVA, R. et al. decisionmaking LCA for energy refurbishment of buildings: conditions of comfort. Energy Buildings, v. 70, p. 333–342, 2014. Doi: 10.1016/j.enbuild.2013.11.049

De SOUZA, A. et al. Application of the desirability function for the development of new composite eco-efficiency indicators for concrete. Journal of Building Engineering, v. 40, 102374, 2021. Doi: 10.1016/j.jobe.2021.102374

DOSSCHE, C.; BOEL, V.; CORTE, W.D. Comparative material-based life cycle analysis of structural beam-floor systems. Journal of Cleaner Production, v. 194, p. 327-341, 2018. Doi: 10.1016/j.jclepro.2018.05.062

EUROPEAN COMMITTEE FOR STANDARDIZATION. EN 15804, Sustainability of Construction Works - Environmental Product Declarations - Core Rules for the Product Category of Construction Products, European Committee for Standardization, Brussels, Belgium, 2012.

EUROPEAN UNION DIRECTIVE. EU Directive 2008/98/EC of the European parliament and of the council on waste and repealing certain directives. Official Journal of the European Union, L312:3–30, 2008.

FOŘT, J.; ČERNÝ, R. Transition to circular economy in the construction industry: Environmental aspects of waste brick recycling scenarios. Waste Management, v. 118, p. 510–520, 2020.

GALAN, I.; ANDRADE, C.; MORA, P.; SANJUAN, M. A. Sequestration of CO2 by Concrete Carbonation. Environmental Science & Technology, v. 44, n. 8; p. 3181-3186, 2010. Doi: 10.1021/es903581d

GUO, Z. et al. Life-cycle assessment of concrete building blocks incorporating recycled concrete aggregates—A case study in China. In Advances in Construction and Demolition Waste Recycling. Woodhead Publishing, 2020, p. 515-535. Doi: 10.1016/B978-0-12-819055-5.00025-5

HISCHIER, R.; REICHART, I. Multifunctional electronic media-traditional media. The International Journal of Life Cycle Assessment, v. 8, n. 4, p. 201-208, 2003. Doi: 10.1007/BF02978472

HOSSAIN, U.; XUAN, D.; POON, C. S. Sustainable management and utilization of concrete slurry waste: A case study in Hong Kong. Waste Management, v. 61, p. 397–404, 2017.

HOSSAIN, M.; POON, C.; DONG, Y.; XUAN, D. Evaluation of environmental impact distribution methods for supplementary cementitious materials. Renewable and Sustainable Energy Reviews, v. 82, p. 597–608, 2018. doi: 10.1016/j.rser.2017.09.048

HOSSAIN, M. et al. Evaluating the environmental impacts of stabilization and solidification technologies for managing hazardous wastes through life cycle assessment: A case study of Hong Kong. Environment International, v. 145, 106139, 2020. Doi: 10.1016/j.envint.2020.106139

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 14040, Environmental Management – Life Cycle Assessment – Principles and Framework, International Organization for Standardization, Geneva, Switzerland, 2006a.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 14044, Environmental Management – Life Cycle Assessment – Requirements and Guidelines, International Organization for Standardization, Geneva, Switzerland, 2006b.

ISLAM, H.; JOLLANDS, M.; SETUNGE, S. Life cycle assessment and life cycle cost implication of residential buildings—a review. Renewable and Sustainable Energy Reviews, v. 42, p. 129–140, 2015. Doi: 10.1016/j.rser.2014.10.006

KIM, S.; DALE, B. Ethanol fuels: E10 or E85 – Life cycle perspectives. The International Journal of Life Cycle Assessment, v. 11, n. 2, p. 117-121, 2006. Doi: 10.1065/lca2005.02.201

KIM, T.; CHAE, C. Environmental impact analysis of acidification and eutrophication due to emissions from the production of concrete. Sustainability, v. 8, n. 6, 578:1–20, 2016. Doi: 10.3390/su8060578

KUA, H.; KAMATH, S. An attributional and consequential life cycle assessment of substituting concrete with bricks. Journal of Cleaner Production, v. 81, p. 190–200, 2014. Doi: 10.1016/j.jclepro.2014.06.006

KURDA, R. et al. Effect of incorporation of high volume of recycled concrete aggregates and fly ash on the strength and global warming potential of concrete. Journal of Cleaner Production, v. 166, p. 485–502, 2017.

KURDA, R.; SILVESTRE, J. D.; DE BRITO, J. Life cycle assessment of concrete made with high volume of recycled concrete aggregates and fly ash. Resources, Conservation and Recycling, v. 139, 407-417, 2018. Doi: 10.1016/j.resconrec.2018.07.004

KURDA, R.; DE BRITO, J.; SILVESTRE, J. A comparative study of the mechanical and life cycle assessment of high-content fly ash and recycled aggregates concrete. Journal of Building Engineering, v. 29, 101173, 2020. Doi: 10.1016/j.jobe.2020.101173

LEE, J.; LEE, T.; JEONG, J.; JEONG, J. Sustainability and performance assessment of binary blended low-carbon concrete using supplementary cementitious materials. Journal of Cleaner Production, v. 280, 124373, 2021. Doi: 10.1016/j.jclepro.2020.124373

LI, J.; ZHANG, W.; LI, C.; MONTEIRO, P. J. Green concrete containing diatomaceous earth and limestone: Workability, mechanical properties, and life-cycle assessment. Journal of cleaner production, v. 223, p. 662-679, 2019. Doi: 10.1016/j.jclepro.2019.03.077

LIMA, P. R. L.; ROQUE, A. B.; FONTES, C. M. A.; LIMA, J. M. F.; BARROS, J. A. Potentialities of cement-based recycled materials reinforced with sisal fibers as a filler component of precast concrete slabs. In Sustainable and Nonconventional Construction Materials Using Inorganic Bonded Fiber Composites, Woodhead Publishing, 399-428, 2017. Doi: 10.1016/B978-0-08-102001-2.00017-6

LO, F.; LEE, M.; LO, S. Effect of coal ash and rice husk ash partial replacement in ordinary Portland cement on pervious concrete. Construction and Building Materials, v. 286, 122947, 2021. Doi: 10.1016/j.conbuildmat.2021.122947

MARINKOVIC et al. Environmental assessment of green concretes for structural use. Journal of Cleaner Production, v. 154, p. 633–649, 2017.

MEEK, A.; ELCHALAKANI, M.; BECKETT, C.; GRANT, T. Alternative stabilised rammed earth materials incorporating recycled waste and industrial by-products: Life cycle assessment. Construction and Building Materials, v. 267, 120997, 2021. Doi: 10.1016/j.conbuildmat.2020.120997

MORENO-JUEZ, J.; VEGAS, I.; GEBREMARIAM, A.; GARCÍA-CORTÉS, V.; DI MAIO, F. Treatment of end-of-life concrete in an innovative heating-air classification system for circular cement-based products. Journal of Cleaner Production, v. 263, 121515, 2020. Doi: 10.1016/j.jclepro.2020.121515

MORO, C.; FRANCIOSO, V.; SCHRAGER, M.; VELAY-LIZANCOS, M. TiO2 nanoparticles influence on the environmental performance of natural and recycled mortars: A life cycle assessment. Environmental Impact Assessment Review, v. 84, 106430, 2020. Doi: 10.1016/j.eiar.2020.106430

RASHID, A.; YUSOFF, S. A review of life cycle assessment method for building industry. Renewable and Sustainable Energy Reviews, v. 45, p. 244–248, 2015. Doi: 10.1016/j.rser.2015.01.043

ROBAYO-SALAZAR, R. A.; MEJÍA-ARCILA, J. M.; MEJÍA DE GUTIÉRREZ, R. Eco-efficient alkali-activated cement based on red clay brick wastes suitable for the manufacturing of building materials. Journal of Cleaner Production, v. 166, p. 242–252, 2017.

ROH, S.; KIM, R.; PARK, W.; BAN, H. Environmental Evaluation of Concrete Containing Recycled and By-Product Aggregates Based on Life Cycle Assessment. Applied Sciences, v. 10, n. 217503, 2020. Doi: 10.3390/app10217503

ROSADO, L. P.; VITALE, P.; PENTEADO, C. S. G.; ARENA, U. Life cycle assessment of natural and mixed recycled aggregate production in Brazil. Journal of cleaner production, v. 151, 634-642, 2017. Doi: 10.1016/j.jclepro.2017.03.068

SABAU, M.; BOMPA, D. V.; SILVA, L. F. O. Comparative carbon emission assessments of recycled and natural aggregate concrete: Environmental influence of cement content. Geoscience Frontiers, v. 12, n. 6, p. 101235, 2021.

SUÁREZ, S.; ROCA, X.; GASSO, S. Product-specific life cycle assessment of recycled gypsum as a replacement for natural gypsum in ordinary Portland cement: Application to the Spanish context. Journal of Cleaner Production, v. 117, p. 150–159, 2016.

TEIXEIRA, E. R. et al. Comparative environmental life-cycle analysis of concretes using biomass and coal fly ashes as partial cement replacement material. Journal of Cleaner Production, v. 112, p. 2221–2230, 2016.

TURK, J,; COTIC, Z,.; MLADENOVIC, A.; SAJNA, A. Environmental evaluation of green concretes versus conventional concrete by means of LCA. Waste Management, v. 45, p. 194–205, 2015. Doi: 10.1016/j.wasman.2015.06.035

VAN DEN HEEDE, P.; DE BELIE, N. Environmental impact and life cycle assessment (LCA) of traditional and ‘green’ concretes: literature review and theoretical calculations. Cement and Concrete Composites, v. 34, n. 4, p. 431–42, 2012. Doi: 10.1016/j.cemconcomp.2012.01.004

VIEIRA, D.R.; CALMON, J.L.; COELHO, F.Z. Life cycle assessment (LCA) applied to the manufacturing of common and ecological concrete: a review. Construction and Building Materials, v. 124, 656–666, 2016. Doi: 10.1016/j.conbuildmat.2016.07.125

VISINTIN, P.; XIE, T.; BENNETT, B. A large-scale life-cycle assessment of recycled aggregate concrete: The influence of functional unit, emissions allocation and carbon dioxide uptake. Journal of Cleaner Production, v. 248, 119243, 2020. Doi: 10.1016/j.jclepro.2019.119243

ZHANG, Y. et al. A review of life cycle assessment of recycled aggregate concrete. Construction and Building Materials, v. 209, p. 115-125, 2019a. Doi: 10.1016/j.conbuildmat.2019.03.078

ZHANG, Y. et al. Effect of compressive strength and chloride diffusion on life cycle CO2 assessment

of concrete containing supplementary cementitious materials. Journal of Cleaner Production, v. 218, p. 450-458, 2019b. Doi: 10.1016/j.jclepro.2019.01.335

ZHOU, A. et al. A novel approach for recycling engineering sediment waste as sustainable supplementary cementitious materials. Resources, Conservation and Recycling, v. 167, 105435, 2021. Doi: 10.1016/j.resconrec.2021.

Publicado

2023-07-25

Cómo citar

do Nascimento Farias, L., Aquino Rocha, J. H., Rosse Caldas, L., & Dias Toledo Filho, R. (2023). ACV DE MATERIALES CEMENTANTES SUPLEMENTARIOS Y ÁRIDOS RECICLADOS: UNA REVISIÓN SISTEMÁTICA: LCA OF SUPPLEMENTARY CEMENTITIOUS MATERIALS AND RECYCLED AGREGGATES: A SYSTEMATIC REVIEW. IX Sustentável, 9(3), 67–81. https://doi.org/10.29183/2447-3073.MIX2023.v9.n3.67-81