TECNOLOGÍAS Y SISTEMAS DE AGUA INTELIGENTES EN EL ENTORNO URBANO: REVISIÓN BIBLIOGRÁFICA

TECHNOLOGIES AND INTELLIGENT WATER SYSTEMS IN THE URBAN ENVIRONMENT: A LITERATURE ANALYSIS

Autores/as

  • Adriana Kunen UTFPR - Universidade Tecnológica Federal do Paraná http://orcid.org/0000-0003-3312-2461
  • Anderson Saccol Ferreira UTFPR - Universidade Tecnológica Federal do Paraná
  • Regina Negri Pagani UTFPR - Universidade Tecnológica Federal do Paraná
  • Gilson Ditzel Santos UTFPR - Universidade Tecnológica Federal do Paraná

DOI:

https://doi.org/10.29183/2447-3073.MIX2023.v9.n2.91-105

Palabras clave:

agua, sistema inteligente, tecnologías, gestión del agua urbana, ciudades inteligentes

Resumen

Hoy en día, el uso irracional del agua en las ciudades se convierte en uno de los factores que contribuyen a agravar diversos problemas como la contaminación y la escasez de estos recursos. La bibliografía señala varios retos, como el consumo irresponsable, la falta de reservas naturales y de tecnología adecuada. Es importante comprender estas tecnologías y sus sistemas en la época contemporánea. El artículo cuestiona la forma en que la literatura aborda las relaciones entre tecnología, sistemas, agua e inteligencia. El estudio pretende realizar una revisión bibliográfica sobre los esfuerzos de investigación acerca de los sistemas de agua inteligentes. Para la revisión se utilizaron diferentes bases de datos con publicaciones entre 2020 y 2022. De ellos, se analizaron 18 artículos científicos. Se tomó nota del uso de las tecnologías para aportar soluciones a los problemas medioambientales de la escasez de agua. Señalamos soluciones que contribuyen al desarrollo de la región y las ciudades y pueden transformarlas en ciudades más inteligentes.

Biografía del autor/a

Adriana Kunen, UTFPR - Universidade Tecnológica Federal do Paraná

Doutoranda em Desenvolvimento Regional pela Universidade Tecnológica Federal do Paraná (PPGDR-UTFPR) e Mestre em Engenharia Civil pela UTFPR. Possui graduação em Arquitetura e Urbanismo pela Universidade Tuiuti do Paraná (UTP). Professora assistente do Departamento de Arquitetura e Urbanismo da Universidade Paranaense. 

 

Anderson Saccol Ferreira, UTFPR - Universidade Tecnológica Federal do Paraná

Doutorando em Desenvolvimento Regional pela Universidade Tecnológica Federal do Paraná (PPGDR-UTFPR) e Mestre em Administração (UNOESC). Possui graduação em Arquitetura e Urbanismo pela UNOESC. Professor e Coordenador do Departamento de Arquitetura e Urbanismo da UNOESC.

 

Regina Negri Pagani, UTFPR - Universidade Tecnológica Federal do Paraná

Doutora em Engenharia de Produção pela Universidade Tecnológica Federal do Paraná (UTFPR) com período sanduíche na Université de Technologie de Compiègne - Sorbonne Universités e Mestre em Engenharia de Produção pela UTFPR. Possui graduação em Administração de Empresas (UEM). Professora Adjunta do Magistério Superior no Departamento Acadêmico de Engenharia de Produção (DAENP) e no Programa de Pós-Graduação em Engenharia de Produção (Mestrado e Doutorado) da UTFPR.

Gilson Ditzel Santos, UTFPR - Universidade Tecnológica Federal do Paraná

Doutor em Administração pela Faculdade de Economia, Administração e Contabilidade da Universidade de São Paulo (USP) e Mestre em Ciências de Administração e Estudos de Políticas Públicas pela Universidade de Tsukuba, Japão. Possui graduação em Engenharia Industrial Elétrica - Ênfase em Eletrônica/Telecomunicações pela Universidade Tecnológica Federal do Paraná (UTFPR). Professor Titular da UTFPR e dos Programas de Pós-Graduação em Desenvolvimento Regional (Mestrado e Doutorado) e Engenharia de Produção e Sistemas (Mestrado).

Citas

ADAMS, M. N.; JOKONYA, O. An investigation of smart water meter adoption factors at universities. Procedia Computer Science, v. 196, p. 324-331, 2022. Disponível em: <https://doi.org/10.1016/j.procs.2021.12.020>. Acesso em: 07 abr. 2022.

AHAD, M. A; PAIVA, S.; TRIPATHI, G.; FEROZ, N. Enabling technologies and sustainable smart cities. Sustainable Cities and Society, v. 61, 2020. Disponível em: <https://doi.org/10.1016/j.scs.2020.102301>. Acesso em: 10 abr. 2022.

AHVENNIEMI, H.; HUOVILA, A.; PINTO-SEPPÄ, I.; AIRAKSINEN, M. What are the differences between sustainable and smart cities? Cities, v. 60, p. 234-245, 2017. Disponível em: <https://doi.org/10.1016/j.cities.2016.09.009>. Acesso em: 10 abr. 2022.

AIVAZIDOU, E.; BANIAS, G.; LAMPRIDI, M.; VASILEIADIS, G.; ANAGNOSTIS, A.; PAPAGEORGIOU, E.; BOCHTIS, D. Smart technologies for sustainable water management: An urban analysis. Sustainability, v. 13, n. 24, p. 13940, 2021. Disponível em: <https://doi.org/10.3390/su132413940>. Acesso em: 07 abr. 2022.

AL-NASRAWI, S.; ADAMS, C.; EL-ZAART, A. A conceptual multidimensional model for assessing smart sustainable cities, Journal of Information Systems and Technology Management, v. 12, n. 3, p. 541-558, 2015. Disponível em: <https://doi.org/10.4301/S1807-17752015000300003>. Acesso em: 28 maio 2022.

ALLAM, Z.; DHUNNY, Z. A. On big data, artificial intelligence and smart cities.Cities, v. 89, p. 80-91, 2019. Disponível em: <https://doi.org/10.1016/j.cities.2019.01.032>. Acesso em: 10 abr. 2022.

ARBOLINO, R.; CARLUCCI, F.; CIRA, A.; YIGITCANLAR, T.; IOPPOLO, G. Mitigating regional disparities through microfinancing: An analysis of microcredit as a sustainability tool for territorial development in Italy. Land Use Policy, v. 70, n. 1, p. 281-288, 2018. Disponível em: <https://doi.org/10.1016/j.landusepol.2017.10.042>. Acesso em: 08 abr. 2022.

ARBOLINO, R.; CARLUCCI, F.; IOPPOLO, G.; YIGITCANLAR, T. Efficiency of the EU regulation on greenhouse gas emissions in Italy: The hierarchical cluster analysis approach. Ecological Indicators, v. 81, p.115-123, 2017. Disponível em: <https://doi.org/10.1016/j.ecolind.2017.05.053>. Acesso em: 08 abr. 2022.

ARBUÉS, F.; GARCÍA-VALIÑAS, M. Á.; MARTÍNEZ, R. M. Estimation of residential water demand: a state-of-the-art review. The Journal of Socio-Economics, v. 32, n.1, p. 81-102, 2003. Disponível em: <https://doi.org/10.1016/S1053-5357(03)00005-2>. Acesso em: 08 abr. 2022.

BIBRI, S. E., KROGSTIE, J. Smart Sustainable Cities of the Future: An Extensive Interdisciplinary Literature Review. Sustainable Cities and Society, v. 31, p. 183–212. 2017. Disponível em: <https://doi.org/10.1016/j.scs.2017.02.016>. Acesso em: 25 maio 2022.

BISHT, S.; SINGH, O.; AGARWAL, A. An approach towards sustainable development of smart city. 2020 International Conferenceon Electrical and Electronics Engineering (ICE3), p. 146-151, 2020. Disponível em: <https://doi.org/10.1109/ICE348803.2020.9122960>. Acesso em: 07 abr. 2022.

BREVIGLIERI, G. V.; OSÓRIO, G. I. D. S.; LEFÈVRE, G. B. New instruments for water management in Brazil. RAUSP Management Journal, v. 55, n. 1, p. 55-69, 2020. Disponível em: <https://doi.org/10.1108/RAUSP-09-2018-0091>. Acesso em: 07 abr. 2022.

BOANO, F.; CARUSO, A.; COSTAMAGNA, E.; RIDOLFI, L.; FIORE, S.; DEMICHELIS, F.; GALVÃO, A.; PISOEIRO, J.; RIZZO, A.; MASI, F. A review of nature-based solutions for greywater treatment: Applications, hydraulic design, and environmental benefits. Science of The Total Environment, v. 711, 2020. Disponível em: <https://doi.org/10.1016/j.scitotenv.2019.134731>. Acesso em: 07 abr. 2022.

CAMELO, S. M.; COURA, M. A.; RODRIGUES, A. C. L.; OLIVEIRA, R.; COSTA FILHO, F. C.; VIDAL, I. C. A. Modelagem da qualidade da água em sistemas de macrodrenagem de bacias urbanas. Engenharia Sanitaria Ambiental, v. 25, n. 6, p. 873-885, 2020. Disponível em: <https://doi.org/10.1590/S1413-415220202019033>. Acesso em: 07 abr. 2022.

CHENŸ, Y.; HAN, D. Water quality monitoring in smart city: A pilot project. Automation in Construction, v. 89, p. 307-316, 2018. Disponível em: <https://doi.org/10.1016/j.autcon.2018.02.008>. Acesso em: 08 abr. 2022.

DUAN, H-F.; PAN, B.; WANG, M.; CHEN, L.; ZHENG, F.; ZHANG, Y. State-of-the-art review on the transient flow modeling and utilization for urban water supply system (UWSS) management. Journal of Water Supply: Research and Technology-AQUA, v. 69, n. 8, p. 858-893, 2020. Disponível em: <https://doi.org/10.2166/aqua.2020.048>. Acesso em: 07 abr. 2022.

FABIANO, L.; VACCA, G.; DINARDO, G. Smart water grid: A smart methodology to detect leaks in water distribution networks, Measurement, v. 151, p. 1-7, 2020. Disponível em: <https://doi.org/10.1016/j.measurement.2019.107260>. Acesso em: 25 maio 2022.

GOUVEIA, R. L.; PEDROSA, I. V. Gestão das Políticas Governamentais para os Recursos Hídricos, Recife, Pernambuco, Brasil. Desenvolvimento Em Questão, v.13, n. 32, p.103–126, 2015. Disponível em: <https://doi.org/10.21527/2237-6453.2015.32.103-126>.Acesso em: 07 abr. 2022.

GIUDICIANNI, C.; HERRERA, M.; NARDO, A.; CARRAVETTA, A.; RAMOS, H. M.; ADEYEYE, K. Zero-net energy management for the monitoring and control of dynamically-partitioned smart water systems. Journal of Cleaner Production, v. 252, 2020. Disponível em: <https://doi.org/10.1016/j.jclepro.2019.119745>. Acesso em: 07 abr. 2022.

GONG, J.; LAMBERT, M.F.; STEPHENS, M.L.; CAZZOLATO, B.S.; ZHANG, C. Detection of Emerging through-Wall Cracks for Pipe Break Early Warning in Water Distribution Systems Using Permanent Acoustic Monitoring and Acoustic Wave Analysis. Water Resour. Manag, v. 34, p. 2419–2432, 2020. Disponível em: <https://doi.org/10.1007/s11269-020-02560-1>. Acesso em: 25 maio 2022.

GOONETILLEKE, A.; YIGITCANLAR, T.; AYOKO, G. A.; EGODAWATTA, P. Sustainable Urban Water Environment: Climate, Pollution, and Adaptation. International Journal of Information Systems and Social Change, v. 6, n. 3, p. 56-58, 2015. Disponível em: <https://www.igi-global.com/pdf.aspx?tid%3D128350%26ptid%3D118550%26ctid%3D17%26t%3Dsustainable+urban+water+environment%3A+climate%2C+pollution%2C+and+adaptation%26isxn%3D9781466676916>. Acesso em: 10 abr. 2022.

GRIGG, N. S. Smart water management: can it improve accessibility and affordability of water for everyone?. Water International, v. 45, n. 6, p. 608-620, 2020. Disponível em: <https://doi.org/10.1080/02508060.2020.1768738>. Acesso em: 07 abr. 2022.

HARRISON, C.; ECKMAN, B.; HAMILTON, R.; HARTSWICK, P.; KALAGNANAM, J.; PARASZCZAK, J.; WILLIAMS, P. Foundations for smarter cities, IBM J. Res. Disinvolvement, v. 54, n. 4, p. 1-16, 2010. Disponível em: <https://doi.org/10.1147/JRD.2010.2048257>. Acesso em: 25 maio 2022.

JAHANDIDEH-TEHRANI, M.; BOZORG-HADDAD, O.; LOÁICIGA, H. A. Application of particle swarm optimization to water management: an introduction and overview. Environmental Monitoring and Assessment, v. 192, n. 281, 2020. Disponível em: <https://doi.org/10.1007/s10661-020-8228-z>. Acesso em: 07 abr. 2022.

LACERDA, R.T. D. O.; ENSSLIN, L.; ENSSLIN, S.R. Uma análise bibliométrica da literatura sobre estratégia e avaliação de desempenho. Gestão & Produção, v. 19, n.1, p. 59-78, 2012. Disponível em: <https://www.scielo.br/j/gp/a/sKh5wfCCGv68fdRP8GStLXC/?lang=pt>. Acesso em: 20 abr. 2022.

MAHBUB, P.; GOONETILLEKE, A.; AYOKO, G. A.; EGODAWATTA, P.; YIGITCANLAR, T. Analysis of build-up of heavy metals and volatile organics on urban roads in gold coast, Australia. Water Science & Technol, v. 63, n. 9, p. 2077-2085, 2011. Disponível em: <https://doi.org/10.2166/wst.2011.151>. Acesso em: 10 abr. 2022.

MARTÍNEZ, R.; VELA, N.; AATIK, A.; MURRAY, E.; ROCHE, P.; NAVARRO, J. M.On the Use of an IoT Integrated System for Water Quality Monitoring and Management in Wastewater Treatment Plants. Water, v. 12, n. 4, 2020. Disponível em: <https://doi.org/10.3390/w12041096>. Acesso em: 07 abr. 2022.

MEKONNEN, M.; HOEKSTRA, A. Y. Four billion people facing severe water scarcity. Science Advances, v. 2, n. 2, p. 1-7, 2016. Disponível em: <https://www.science.org/doi/10.1126/sciadv.1500323>. Acesso em: 10 abr. 2022.

MOHANTY, S. P; CHOPPALI, U.; KOUGIANOS, E. Everything you wanted to know about smart cities: The Internet of things is the backbone. Computer Science, IEEE Consumer Electronics Magazine, v. 5, n. 3, p. 60-70, 2016. Disponível em: <https://doi.org/10.1109/MCE.2016.2556879>. Acesso em: 10 abr. 2022.

NAGAR, A.; PRADEEP, T. Clean water through nanotechnology: Needs, gaps and fulfillment. American Chemical Society ACS Nano, v. 14, n. 6, p. 6420-6435, 2020. Disponível em: <https://doi.org/10.1021/acsnano.9b01730>. Acesso em: 07 abr. 2022.

NIE, X.; FAN, T.; WANG, B.; LI, Z.; SHANKAR, A.; MANICKAM, A. Big Data analytics and IoT in Operation safety management in Under Water Management. Computer Communications, v. 154, p. 188-196, 2020. Disponível em: <https://doi.org/10.1016/j.comcom.2020.02.052>. Acesso em: 07 abr. 2022.

RAMOS, H. M.; MCNABOLA, A.; LÓPEZ-JIMÉNEZ, P. A.; PÉREZ-SÁNCHEZ, M. Smart water management towards future water sustainable networks. Water, v. 12, n. 1, p. 58, 2020. Disponível em: <https://doi.org/10.3390/w12010058>. Acesso em: 07 abr. 2022.

RUSSELL, S.; FIELDING, K. Water demand management research: a psychological perspective. Water Resources Research, v. 46, n. 5, p. 1-12, 2010. Disponível em: <https://doi.org/10.1029/2009WR008408>. Acesso em: 08 abr. 2022.

SARAJU, P.; MOHANTY, U.; KOUGIANOS, E. C.; Everything you wanted to know about smart cities: The Internet of Things is the backbone, IEEE Consumer Electronics Magazine, v. 5, n. 3, p. 60-70, 2016. Disponível em: <https://doi.org/10.1109/MCE.2016.2556879>. Acesso em: 25 maio 2022.

SAVIĆ, D.; VAMVAKERIDOU-LYROUDIA, L.; KAPELAN, Z. Smart Meters, Smart Water, Smart Societies: The iWIDGET Project. Procedia Engineering, v. 89, p. 1105-1112, 2014. Disponível em: <https://doi.org/10.1016/j.proeng.2014.11.231>. Acesso em: 08 abr. 2022.

SILVA, B. N.; KHAN, M.; HAN, K. Integration of Big Data analytics embedded smart city architecture with RESTful web of things for efficient service provision and energy management. Future Generation Computer Systems, v. 107, p. 975-987, 2020. Disponível em: <https://doi.org/10.1016/j.future.2017.06.024>. Acesso em: 07 abr. 2022.

SINGH, M.; AHMED, S. IoT based smart water management systems: A systematic review. Materials Today: Proceedings, v. 46, n. 11, p. 5211-5218, 2021. Disponível em: <https://doi.org/10.1016/j.matpr.2020.08.588>. Acesso em: 07 abr. 2022.

STEPHENS, M.; GONG, J.; ZHANG, C.; MARCHI, A.; DIX, L.; LAMBERT, M.F. Leak-Before-Break Main Failure Prevention for Water Distribution Pipes Using Acoustic Smart Water Technologies: Case Study in Adelaide. J. Water Resour. Plan. Manag, v. 146, n. 10, 2020. Disponível em: <https://doi.org/10.1061/(ASCE)WR.1943-5452.0001266>. Acesso em: 07 abr. 2022.

THE WORLD BANK. DataBank, Metadata Glossary, 2022. Disponível em: <https://databank.worldbank.org/metadataglossary/world-development-indicators/series/EN.URB.MCTY.TL.ZS>. Acesso em: 10 abr. 2022.

UDDIN, M. J.; JEONG, Y-K. Urban river pollution in Bangladesh during last 40 years: potential public health and ecological risk, present policy, and future prospects toward smart water management. Heliyon, v. 7, n. 2, 2021. Disponível em: <https://doi.org/10.1016/j.heliyon.2021.e06107>. Acesso em: 07 abr. 2022.

UMAMAHESWARI, S.; PRIYA, K. H.; KUMAR, S. A. Technologies used in smart city applications – An overview. 2021 International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation (ICAECA), p. 1-6, 2021. Disponível em: <https://doi.org/10.1109/ICAECA52838.2021.9675707>. Acesso em: 07 abr. 2022.

UN HABITAT. Global State of Metropolis 2020 - Population Data Booklet, 2020. Disponível em: <https://unhabitat.org/global-state-of-metropolis-2020-%E2%80%93-population-data-booklet>. Acesso em: 10 abr. 2022.

UNITED NATIONS. World Urbanization Prospects 2018: Highlights, 2019a. Disponível em: <https://population.un.org/wup/Publications/Files/WUP2018-Report.pdf>.Acesso em: 24 abr. 2022. Disponível em:https://www.sdg6data.org/?fbclid=IwAR3xWj1X9g8nwCNc7f2DD533gUJuiflhGa26mYjM0Y8Kc2_hPCEwy-k2qX4

UNITED NATIONS. Pnuma: Economizando água uma gota de cada vez, 2019b. Disponível em: <https://news.un.org/pt/story/2019/04/1666691>. Acesso em: 08 abr. 2022.

UNITED NATIONS. Sustainable Development Goal 6 on water and sanitation (SDG 6), 2020. Disponível em: <https://news.un.org/pt/story/2019/04/1666691#:~:text=A%20FAO%20estima%20que%2069,apenas%20uma%20gota%20no%20oceano>. Acesso em: 10 abr. 2022.

UNITED NATIONS. World urbanization prospects. the 2014 revision. New York: Department of Economic and Social Affairs, 2015. Disponível em: <https://population.un.org/wup/>. Acesso em: 08 abr. 2022.

VISSER, M.; BOOYSEN, M. J.; BRÜHL, J. M.; BERGER, K. J. Saving water at Cape Town schools by using smart metering and behavioral change. Water Resources and Economics, v. 34, 2021. Disponível em: <https://doi.org/10.1016/j.wre.2020.100175>. Acesso em: 10 abr. 2022.

WAHAB, N. S. N.; SEOW, T. W.; RADZUAN, I. S. M.; MOHAMED, S. A systematic literature review on the dimensions of smart cities. IOP Conference Series: Earth and Environmental Science, v. 498, 2020. Disponível em: <https://doi.org/10.1088/1755-1315/498/1/012087>. Acesso em: 07 abr. 2022.

WATER RESOURCES GROUP. 2017 Annual Report: Scaling Up for Impact. Water security partnerships for people, growth, and the environment. IFC, 2017. Disponível em: <https://www.2030wrg.org/wp-content/uploads/2018/03/2017-Annual-Report-2030-WRG.pdf>. Acesso em: 10 abr. 2022.

Publicado

2023-04-02

Cómo citar

Kunen, A., Ferreira, A. S., Pagani, R. N., & Santos, G. D. (2023). TECNOLOGÍAS Y SISTEMAS DE AGUA INTELIGENTES EN EL ENTORNO URBANO: REVISIÓN BIBLIOGRÁFICA: TECHNOLOGIES AND INTELLIGENT WATER SYSTEMS IN THE URBAN ENVIRONMENT: A LITERATURE ANALYSIS . IX Sustentável, 9(2), 91–105. https://doi.org/10.29183/2447-3073.MIX2023.v9.n2.91-105