SUSTAINABLE HOUSING RESETTLEMENT MODEL IN SOUTHERN BRAZIL: ECONOMIC AND ENVIRONMENTAL ASSESSMENT
MODELO DE REASSENTAMENTO HABITACIONAL SUSTENTÁVEL NO SUL DO BRASIL: AVALIAÇÃO ECONÔMICA E AMBIENTAL
DOI:
https://doi.org/10.29183/2447-3073.MIX2025.v11.n2.31-45Keywords:
Social housing, Economic viability, Green technologies, Environmental impactAbstract
Social inequality often forces vulnerable populations to occupy high-risk areas, compromising their well-being and degrading the environment. This study proposed a sustainable housing model for the residents of the Passo Fundo community in Lages, Santa Catarina, who currently occupy a flood-prone area irregularly. The proposed model is based on a modular house equipped with rainwater harvesting systems, photovoltaic panels, and solar collectors. Economic feasibility was analyzed, and the model was environmentally compared to conventional housing options. The results demonstrated that implementing one or more green technologies aligns with the housing financing criteria, making it accessible to the target population. The environmental impact analysis highlighted the severe negative impacts associated with the residents’ current conditions, but showed a substantial reduction in these impacts with the adoption of the proposed model. Ultimately, the study successfully presented a social housing model that balances environmental and economic aspects, offering a practical solution for improving living conditions in vulnerable communities.
References
ABNT - Brazilian Association of Technical Standards. NBR 15527: Rainwater – use of roofs in urban areas for non-potable purposes. Rio de Janeiro, 2007. 08 p.
ABNT - Brazilian Association of Technical Standards. NBR 5626: Cold water installation. Rio de Janeiro, 1998. 41 p.
ABNT - Brazilian Association of Technical Standards. NBR 15569: Direct circuit solar water heating system. Rio de Janeiro, 2020. 52 p.
Alhassan, A. A.; Awoamim, Y. J.; Yusuf, U. D.; Dogara, M. U. The challenges of sustainable buildings in Nigeria. International Journal of Sustainable Building Technology and Urban Development, v. 13 (4), p. 488-499, 2022. https://doi.org/10.22712/susb.20220035
CASAN - Santa Catarina Water and Sanitation Company. Residential Tax. Available from: https://www.casan.com.br/menu-conteudo/index/url/residencial#0. Accessed on: March 02, 2022.
CELESC - Santa Catarina Power Plants. Tariffs and Energy Fees. Available from: https://www.celesc.com.br/tarifas-de-energia. Accessed on: March 30, 2022.
Chen, Y.; Liu, T.; Ge, Y.; Xia, S.; Yuan, Y.; Li, W.; Xu, H. Examining social vulnerability to flood of affordable housing communities in Nanjing, China: Building long-term disaster resilience of low-income communities. Sustainable Cities and Society, v. 71, 102939, 2021. https://doi.org/10.1016/j.scs.2021.102939
Cordeiro, M. T. A.; Rafaeli Neto, S. L. Urban systems behavior analysis through components of hydrological systems. GEOUSP – Espaço e Tempo, v. 19, n. 1, p. 142-155, 2015. https://doi.org/10.11606/issn.2179-0892.geousp.2015.99771
CPRM – Geological Survey of Brazil. Sectorization of High and Very High-Risk Areas for Mass Movements, Floods and Inundations. Lages – SC. 2018. Available from: https://rigeo.cprm.gov.br/handle/doc/18726. Accessed on: March 02, 2022.
CRESESB – Salvo Brito Reference Center for Solar and Wind Energy. Sundata Program. Rio de Janeiro: CRESESB, 2018. Available from: http://www.cresesb.cepel.br/index.php?section=sundata&. Accessed on: November 10, 2022.
Fischer, 2020. Technical Guidelines Fischer Modular House - DATec nº 038. March, 2020.
Gordon, S. B.; Bruce, N. G.; Grigg, J.; Hibberd, P. L.; Kurmi, O. P.; Lam, K. H.; Mortimer, K.; Asante, K. P.; Balakrishnan, K.; Balmes, J.; Bar-Zeev, N.; Bates, M. N.; Breysse, P. N.; Buist, S.; Chen, Z.; Havens, D.; Jack, D.; Jindal, S.; Kan, H.; Mehta, S.; Moschovis, P.; Naeher, L.; Patel, A.; Perez-Padilla, R.; Pope, D.; Rylance, J.; Semple, S.; Martin II, W. J. Respiratory risks from household air pollution in low and middle income countries. The Lancet Respiratory Medicine, v. 2 (10), p. 823-860, 2014. https://doi.org/10.1016/S2213-2600(14)70168-7
Hwang, B.; Zhu, L.; Ming, J. T. T. Productivity improvement strategies for green construction projects: performance comparison and critical factors. International Journal of Sustainable Building Technology and Urban Development, v. 8 (1), p. 45-53, 2017. https://doi.org/10.12972/susb.20170004
Jbaily, A.; Zhou, X.; Liu, J.; Lee, T.; Kamareddine, L.; Verguet, S.; Dominici, F. Air pollution exposure disparities across US population and income groups. Nature, v. 601, p. 228-233, 2022. https://doi.org/10.1038/s41586-021-04190-y
Kim, S.; Ahn, Y.; Lim, J. Identifying drivers and barriers to green remodeling projects from the perspective of project participants. International Journal of Sustainable Building Technology and Urban Development, v. 11 (4), p. 192-208, 2020. https://doi.org/10.22712/susb.20200015
Kolokotsa, D.; Santamouris, M. Review of the indoor environmental quality and energy consumption studies for low-income households in Europe. Science of the Total Environment, v. 536, p. 316-330, 2015. https://doi.org/10.1016/j.scitotenv.2015.07.073
Lee, J.; Shepley, M. M. Benefits of solar photovoltaic systems for low-income families in social housing of Korea: Renewable energy applications as solutions to energy poverty. Journal of Building Engineering, v. 28, n. 101016, 2020. https://doi.org/10.1016/j.jobe.2019.101016
Liaw, C.; da Silva, V. E.; Maduro, R.; Megrè, M.; Gonçalves, J. C. S. I.; dos Santos, E. M.; Mouette, D. Thermal comfort analysis using system dynamics modeling – A sustainable scenario proposition for low-income housing in Brazil. Sustainability, v. 15, 5831, 2023. https://doi.org/10.3390/su15075831
Magalhães, R. S.; Santana, W. B.; Maués, L. M. F.; Chaves, G. I. F. Analysis of water and energy consumption in a vertical green residential building in the Amazon. Mix Sustentável, v. 10 (1), p. 93-108, 2024. http://dx.doi.org/10.29183/2447-3073.MIX2024.v10.n1.93-108
MDR - Ministry of Regional Development. My House, My Life Program. 2020. Available from: https://www.gov.br/mdr/pt-. Accessed on: April 18, 2022.
Pembi, F.; Thomas, K. P.; Baudouin, M. A. Congolese people practices towards insalubrity in the Mombele District. Open Journal of Ecology, v. 12, p. 133-148, 2022. https://doi.org/10.4236/oje.2022.122008
PROCEL - Brazilian Center for Energy Efficiency Information. Estimate the cost of home appliances. Available from: http://www.procelinfo.com.br/main.asp?View=%7BE6BC2A5F-E787-48AF-B485-439862B17000%7D. Accessed on: April 18, 2022.
Rentschler, J.; Salhab, M.; Jafino, B. A. Flood exposure and poverty in 188 countries. Nature Communications, v. 13, n. 3527, 2022. https://doi.org/10.1038/s41467-022-30727-4
Saito, S. M.; Dias, M. C. A.; Alvalá, R. C. S; Stenner, C.; Franco, C. O.; Ribeiro, J. V. M.; Souza, P. A.; Santana, R. A. S. M. Urban population exposed to risks of landslides, floods and flash floods in Brazil. Sociedade & Natureza, v. 31, e46320, 2019. https://doi.org/10.14393/SN-v31-2019-46320
SNIS 2019. Diagnosis of Water and Sewage Services. Available from: http://www.snis.gov.br/downloads/diagnosticos/ae/2019/Diagnostico-SNIS-AE-2019-%20Capitulo-08.pdf. Accessed on: April 18, 2022.
Soares, G. M. P. G.; Lafayette, K. P. V.; Silva, L. C. L. Análise de uma encosta em área de risco no Bairro de Aguazinha – Olinda/PE. Mix Sustentável, v. 8 (3), p. 47-54, 2022. http://dx.doi.org/10.29183/2447-3073.MIX2022.v8.n3.47-54
Tate, E.; Rahman, M. A.; Emrich, C. T.; Sampson, C. C. Flood exposure and social vulnerability in the United States. Natural Hazards, 106, p. 435-457, 2021. https://doi.org/10.1007/s11069-020-04470-2
Tubelo, R.; Rodrigues, L.; Gillott, M.; Soares, J. C. G. Cost-effective envelope optimization for social housing in Brazil’s moderate climates zones. Building and Environment, v. 133, p. 213-227, 2018. https://doi.org/10.1016/j.buildenv.2018.01.038
Vasconcelos, C.; Soares, P. R. S.; Lopes, L. E. L.; Reis, E. S.; Franco, A. S. F. Design elements that qualify housing for social interest: case study in the municipality of Curionópolis-PA. Mix Sustentável, v. 10 (4), p. 99-112, 2024. http://dx.doi.org/10.29183/2447-3073.MIX2024.v10.n4.99-112
Windapo, A.; Omopariola, E. D.; Olugboyega, O.; Moghayedi, A. Use and performance of conventional and sustainable building technologies in low-income housing. Sustainable Cities and Society, v. 65, 102606, 2021. https://doi.org/10.1016/j.scs.2020.102606
Zhao, D.; McCoy, A. P.; Agee, P.; Mo, Y.; Reichard, G.; Paige, F. Time effects of green buildings on energy use for low-income households: A longitudinal study in the United State. Sustainable Cities and Society, v. 40, p.559-568, 2018. https://doi.org/10.1016/j.scs.2018.05.011
Zocolotti, F. M.; Haus, T. L. Análise de viabilidade ambiental e econômica para um sistema de captação de água da chuva no modelos habitacional unifamiliar popular da Caixa Econômica Federal. Memorial TCC Caderno da Graduação, v. 1.1, p. 403-422, 2015.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Rafael Bonella Zuglianello, Carlos Tasior Leão, Juliana Ferreira Soares, Flávio José Simioni, Jeane de Almeida do Rosário

This work is licensed under a Creative Commons Attribution 4.0 International License.
Creative Commons Copyright Notice
Attribution 4.0 International