TOOLS FOR ASSESSING THE FINANCIAL SUSTAINABILITY OF INTEGRATED MANAGEMENT SYSTEMS OF URBAN SOLID WASTE
FERRAMENTAS PARA AVALIAÇÃO DA SUSTENTABILIDADE FINANCEIRA DE SISTEMAS DE GERENCIAMENTO INTEGRADO DE RESÍDUOS SÓLIDOS URBANOS
DOI:
https://doi.org/10.29183/2447-3073.MIX2024.v10.n3.105-120Keywords:
Solid waste management, Financial sustainability, Evaluation methodsAbstract
The integrated management of urban solid waste (IMUSW) is considered a challenging task due to the multiple dimensions that make up the system, its changes over time and the fragility of financial sustainability in the sector. Knowing the tools that enable the analysis of this complex system is important to help decision makers in waste management. Thus, this article aims to present the tools, and indicate the most suitable ones to be used to analyze the behavior and interrelation of the elements that affect the financial sustainability of municipalities in the IMUSW over time. As a result, when considering IMUSW systems, System Dynamics (SD) presented advantages over other static tools and methods of operational research due to their complex, changeable and recognizable nature from real world elements. This study provides important contributions for future research and IMUSW management planning, as it provides information on the most relevant and current tools for the development of studies focused on waste management and the financial sustainability of the system.
References
ABDEL-SHAFY, H. I.; MANSOUR, M. S. M. Solid waste issue: Sources, composition, disposal, recycling, and valorization. Egyptian Journal of Petroleum, v. 27, n. 4, p. 1275–1290, 2018.
AGATON, C. B. et al. Economic analysis of waste-to-energy investment in the Philippines: A real options approach. Applied Energy, v. 275, n. April, p. 115265, 2020.
ALI, G.; PUMIJUMNONG, N.; CUI, S. Decarbonization action plans using hybrid modeling for a low-carbon society: The case of Bangkok Metropolitan Area. Journal of Cleaner Production, v. 168, p. 940–951, 2017.
AMAL, L. et al. Analysis of municipal solid waste collection using GIS and multi-criteria decision aid. Applied Geomatics, v. 12, n. 2, p. 193–208, 2020.
AZIS, M. M.; KRISTANTO, J.; PURNOMO, C. W. A techno‐economic evaluation of municipal solid waste (Msw) conversion to energy in indonesia. Sustainability (Switzerland), v. 13, n. 13, 2021.
BING, X. et al. Research challenges in municipal solid waste logistics management. Waste Management, v. 48, p. 584–592, 2016.
BOOKSTABER, R.; PADDRIK, M.; TIVNAN, B. An agent-based model for financial vulnerability. Journal of Economic Interaction and Coordination, v. 13, n. 2, p. 433–466, 2018.
BORSHCHEV, A.; FILIPPOV, A. From System Dynamics to Agent Based Modeling: 2004.
BUI, T. D. et al. Effective municipal solid waste management capability under uncertainty in Vietnam: Utilizing economic efficiency and technology to foster social mobilization and environmental integrity. Journal of Cleaner Production, v. 259, p. 120981, 2020.
BUSCH, J. et al. emergence of district heating networks crossmark. Energy Policy, v. 100, n. June 2016, p. 170–180, 2017.
BYAMBA, B.; ISHIKAWA, M. Municipal solid waste management in Ulaanbaatar, Mongolia: Systems Analysis. Sustainability (Switzerland), v. 9, n. 6, 2017.
CAMPOS-ALBA, C. M. et al. The selective collection of municipal solid waste and other factors determining cost efficiency. An analysis of service provision by spanish municipalities. Waste Management, v. 134, n. March, p. 11–20, 2021.
CETRULO, T. B. et al. Effectiveness of solid waste policies in developing countries: A case study in Brazil. Journal of Cleaner Production, v. 205, p. 179–187, 2018.
CHAVES, G. L. D.; SANTOS, J. L.; ROCHA, S. M. S. The challenges for solid waste management in accordance with Agenda 21: A Brazilian case review. Waste Management and Research, v. 32, p. 19–31, 2014.
CHAVES, G. L. D.; SIMAN, R. R.; SENA, L. G. Assessment tool for integrated solid waste management municipal plans: Part 1. Engenharia Sanitaria e Ambiental, v. 25, n. 1, p. 167–179, 2020.
CHEN, C. et al. Multi-objective optimization of technology solutions in municipal solid waste treatment system coupled with pollutants cross-media metabolism issues. Science of the Total Environment, v. 807, p. 150664, 2022.
DE FEO, G. et al. Environmental and economic benefits of the recovery of materials in a municipal solid waste management system. Environmental Technology (United Kingdom), v. 40, n. 7, p. 903–911, 2017.
DONG, Y.; NG, S. T.; LIU, P. A comprehensive analysis towards benchmarking of life cycle assessment of buildings based on systematic review. Building and Environment, v. 204, n. March, p. 108162, 2021.
DUTRA, R. M. DE S.; YAMANE, L. H.; SIMAN, R. R. Influence of the expansion of the selective collection in the sorting infrastructure of waste pickers’ organizations: A case study of 16 Brazilian cities. Waste Management, v. 77, n. 2018, p. 50–58, 2018.
FERREIRA, A. C.; BARROS, R. T. V. Panorama dos gastos públicos municipais com os serviços de limpeza urbana e manejo de resíduos sólidos: uma análise da Região Metropolitana de Belo Horizonte (MG). Engenharia Sanitaria e Ambiental, v. 26, n. 4, p. 659–668, 2021.
FERRONATO, N. et al. The municipal solid waste management of La Paz (Bolivia): Challenges and opportunities for a sustainable development. Waste Management and Research, v. 36, n. 3, p. 288–299, 2018.
GALAVOTE, T. et al. Avaliação do efeito do fortalecimento da coleta seletiva nos custos de gerenciamento de resíduos sólidos urbanos. n. Revista Brasileira de Gestão Urbana, p. 1–18, 2023.
GRANT, M. J.; BOOTH, A. A typology of reviews: An analysis of 14 review types and associated methodologies. Health Information and Libraries Journal, v. 26, n. 2, p. 91–108, 2009.
GUERRERO, L. A.; MAAS, G.; HOGLAND, W. Solid waste management challenges for cities in developing countries. Waste Management, v. 33, n. 1, p. 220–232, 2013.
HABIB, M. A. et al. Municipal solid waste management and waste-to-energy potential from rajshahi city corporation in bangladesh. Applied Sciences (Switzerland), v. 11, n. 9, 2021.
HADIAN, S.; MADANI, K. A system of systems approach to energy sustainability assessment: Are all renewables really green? Ecological Indicators, v. 52, p. 194–206, 2015.
HELLWEG, S.; CANALS, L. M. I. Emerging approaches, challenges and opportunities in life cycle assessment. Science, v. 344, n. 6188, p. 1109–1113, 2014.
HÖKE, M. C.; YALCINKAYA, S. Municipal solid waste transfer station planning through vehicle routing problem-based scenario analysis. Waste Management and Research, v. 39, n. 1, p. 185–196, 2021.
HURST, E.; LUSARDI, A. Liquidity constraints, household wealth, and entrepreneurship revisited. Review of Income and Wealth, v. 58, n. 2, p. 279–306, 2004.
ILYAS, M.; KASSA, F. M.; DARUN, M. R. Life cycle cost analysis of wastewater treatment: A systematic review of literature. Journal of Cleaner Production, v. 310, n. May, p. 127549, 2021.
JOVIˇCI´C, M. et al. Assessment of the Fragility of the Municipal Waste Sector in Serbia Using System Dynamics Modelling. v. 14, p. 862, 2022.
JUNG, J. U. Reducing subjectivity in the system dynamics modeling process: An interdisciplinary approach. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 10585 LNCS, p. 365–375, 2017.
KAKATI, C.; ROY, A. Economics and Business Review Editorial introduction. [s.l: s.n.]. v. 7
KAPLAN, R. S.; NORTON, D. P. The Balanced Scorecard – Measures that Drive Performance The Balanced Scorecard — Measures. 1991.
KAZA, S. et al. What a waste 2.0. A Global Snapshot of Solid Waste Management to 2050. Washington ed. [s.l: s.n.].
KHAN, S. et al. Technologies for municipal solid waste management: Current status, challenges, and future perspectives. Chemosphere, v. 288, n. P1, p. 132403, 2022.
KHUDZARI, J. et al. Bibliometric analysis of global research trends on microbial fuel cells using Scopus database. Biochemical Engineering Journal, v. 136, p. 51–60, 2018.
KOLLIKKATHARA, N.; FENG, H.; YU, D. A system dynamic modeling approach for evaluating municipal solid waste generation, landfill capacity and related cost management issues. Waste Management, v. 30, n. 11, p. 2194–2203, 2010.
KUNC, M. Proceedings of the 2017 Winter Simulation Conference W. K. V. Chan, A. D’Ambrogio, G. Zacharewicz, N. Mustafee, G. Wainer, and E. Page, eds. p. 597–606, 2017.
KUO, T. C. et al. Biofuels for vehicles in Taiwan: Using system dynamics modeling to evaluate government subsidy policies. Resources, Conservation and Recycling, v. 145, n. September 2018, p. 31–39, 2019.
LEAL FILHO, W. et al. Sustainable development policies as indicators and pre-conditions for sustainability efforts at universities: Fact or fiction? International Journal of Sustainability in Higher Education, v. 19, n. 1, p. 85–113, 2018.
LEITE, F. F. DE O. et al. Evaluation of technological alternatives for the treatment of urban solid waste: A case study of Minas Gerais, Brazil. Journal of Cleaner Production, v. 330, n. September 2021, 2022.
MACAL, C. M. To agent-based simulation from System Dynamics. n. 2001, p. 371–382, 2010.
MAHMUD, R. et al. Integration of techno-economic analysis and life cycle assessment for sustainable process design – A review. Journal of Cleaner Production, v. 317, n. June, p. 128247, 2021.
MAK, T. M. W. et al. A system dynamics approach to determine construction waste disposal charge in Hong Kong. Journal of Cleaner Production, v. 241, p. 118309, 2019.
MARINO, A. L.; CHAVES, G. L. D.; SANTOS JUNIOR, J. L. DOS. Do Brazilian municipalities have the technical capacity to implement solid waste management at the local level? Journal of Cleaner Production, v. 188, p. 378–386, 2018.
MASSARUTTO, A. Economic aspects of thermal treatment of solid waste in a sustainable WM system. Waste Management, v. 37, p. 45–57, 2015.
MENCONI, M. E.; GROHMANN, D. Model integrated of life-cycle costing and dynamic thermal simulation (MILD) to evaluate roof insulation materials for existing livestock buildings. Energy and Buildings, v. 81, p. 48–58, 2014.
MENG, X. Y.; ZHANG, Y. T.; WANG, Y. Research process on decision- making of comprehensive management of municipal solid waste. Acta Ecologica Sinica, v. 41, n. 16, p. 6303–6313, 2021.
MESA, J. A.; FÚQUENE, C. E.; MAURY-RAMÍREZ, A. Life cycle assessment on construction and demolition waste: A systematic literature review. Sustainability (Switzerland), v. 13, n. 14, 2021.
MUHAMMAD, H. S.; SALIHI, I. U. Application of the un-habitat integrated sustainable waste management methodology to evaluate the solid waste management system in the city of Kano, Nigeria. International Journal of Engineering Research in Africa, v. 38, n. i, p. 115–123, 2018.
MUÑOZ, M. DEL P. S. et al. Sustainability of the usable solid waste market in Bogota (Colombia). urbe. Revista Brasileira de Gestão Urbana, v. 13, p. 1–18, 2021.
NUZZOLO, A. et al. Agent-Based Simulation of urban goods distribution: a literature review. Transportation Research Procedia, v. 30, p. 33–42, 2018.
PESSIN, V. Z.; YAMANE, L. H.; SIMAN, R. R. Smart bibliometrics: an integrated method of science mapping and bibliometric analysis. Scientometrics, v. 127, n. 6, p. 3695–3718, 2022.
PHONPHOTON, N.; PHARINO, C. A system dynamics modeling to evaluate flooding impacts on municipal solid waste management services. Waste Management, v. 87, p. 525–536, 2019.
PINHA, A. C. H.; SAGAWA, J. K. A system dynamics modelling approach for municipal solid waste management and financial analysis. Journal of Cleaner Production, v. 269, p. 122350, 2020.
PLASTININA, I. et al. Implementation of circular economy principles in regional solid municipal waste management: The case of Sverdlovskaya Oblast (Russian Federation). Resources, v. 8, n. 2, 2019.
POPLI, K.; SUDIBYA, G. L.; KIM, S. A Review of Solid Waste Management using System Dynamics Modeling. Journal of Environmental Science International, v. 26, n. 10, p. 1185–1200, 2017.
PRUYT, E. Small System Dynamics Models for Big Issues: Triple Jump towards Real-World Complexity. Netherlands: Delft: TU Delft Library, 2013.
RAZZAQ, A. et al. Dynamic and causality interrelationships from municipal solid waste recycling to economic growth, carbon emissions and energy efficiency using a novel bootstrapping autoregressive distributed lag. Resources, Conservation and Recycling, v. 166, n. September 2020, p. 105372, 2021.
REBEHY, P. C. P. W. et al. Innovative social business of selective waste collection in Brazil: Cleaner production and poverty reduction. Journal of Cleaner Production, v. 154, p. 462–473, 2017.
RIZWAN, M. et al. A multiobjective optimization framework for sustainable design of municipal solid waste processing pathways to energy and materials. International Journal of Energy Research, v. 44, n. 2, p. 771–783, 2020.
SABAGHI, M.; MASCLE, C.; BAPTISTE, P. Evaluation of products at design phase for an efficient disassembly at end-of-life. Journal of Cleaner Production, v. 116, p. 177–186, 2016.
SALVADOR, R. et al. Life cycle assessment of electricity from biogas: A systematic literature review. Environmental Progress and Sustainable Energy, v. 38, n. 4, p. 1–8, 2019.
SANCHETA, L.; CHAVES, G.; SIMAN, R. R. The use of system dynamics on urban solid waste management: A literature analysis. Gestao e Producao, v. 28, n. 3, p. 1–18, 2021.
SANTOS, L. A. C.; BRITO, T. R. DO C.; SILVA-NETO, C. DE M. Revista Brasileira de Geografia Física. v. 04, p. 1715–1731, 2022.
SCHIERITZ, N.; MILLING, P. M. Modeling the Forest or Modeling the Trees A Comparison of System Dynamics and Agent-Based Simulation. n. Phelan 1999, 2001.
SILVA, C. L.; FUGII, G. M.; SANTOYO, A. H. Proposta De Um Modelo De Dinâmica De Sistemas Da Gestão De Resíduos Sólidos Urbanos Domiciliares: Um Estudo Aplicado a Curitiba (Brasil) a Luz Da Política Nacional De Resíduos Sólidos (Pnrs). Revista Brasileira de Gestão e Desenvolvimento Regional, v. 19, n. 1, p. 662–686, 2023.
SILVA, E. R. S. DA; BORNIA, A. C.; PAMPLONA, E. DE O. Contribuição dos sistemas de medição de desempenho no ambiente de integração da cadeia de suprimentos. XIII Congresso Brasileiro de Custos – Belo Horizonte, MG, Brasil, 2006.
SNIS. Diagnóstico Temático Manejo de Resíduos Sólidos Urbanos - ano de referência 2020. 2021.
SOLIS, B. P. et al. Bibliometric analysis of the mass transport in a gas diffusion layer in PEM fuel cells. Sustainability (Switzerland), v. 11, n. 23, 2019.
SOLTANI, A.; SADIQ, R.; HEWAGE, K. Selecting sustainable waste-to-energy technologies for municipal solid waste treatment: A game theory approach for group decision-making. Journal of Cleaner Production, v. 113, p. 388–399, 2016.
SOUZA, A. R. DE et al. Analysis of the potential use of landfill biogas energy and simulation of greenhouse gas emissions of different municipal solid waste management scenarios in varginha, MG, Brazil. Engenharia Sanitaria e Ambiental, v. 24, n. 5, p. 887–896, 2019.
SOUZA, V. M.; BLOEMHOF, J.; BORSATO, M. Assessing the eco-effectiveness of a solid waste management plan using agent-based modelling. Waste Management, v. 125, p. 235–248, 2021.
STERMAN, J. D. Does formal system dynamics training improve people’s understanding of accumulation? System Dynamics Review, v. 26, n. 4, p. 316–334, 2010.
STERMAN, J. D. System dynamics at sixty: the path forward. System Dynamics Review, v. 34, n. 1–2, p. 5–47, 2018.
TAKO, A. A.; ROBINSON, S. Comparing model development in Discrete Event Simulation and System Dynamics. n. May 2014, 2010.
TSAI, W. Turning Food Waste into Value-Added Resources: Current Status and Regulatory Promotion in Taiwan. 2020.
VARGAS-TERRANOVA, C. A. et al. M-GRCT: A Dynamic Circular Economy Model for the Optimal Design of Waste Management Systems in Low-Income Municipalities. International Journal of Environmental Research and Public Health, v. 19, n. 5, 2022.
VIOTTI, P. et al. An Eco-Balanced and Integrated Approach for a More-Sustainable MSW Management. Waste and Biomass Valorization, v. 11, n. 10, p. 5139–5150, 2020.
WANG, J. J. et al. Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renewable and Sustainable Energy Reviews, v. 13, n. 9, p. 2263–2278, 2009.
WANG, Z. et al. Environmental and economic performance of an integrated municipal solid waste treatment: A Chinese case study. Science of the Total Environment, v. 709, 2020.
XIAO, S. et al. Policy impacts on Municipal Solid Waste management in Shanghai: A system dynamics model analysis. Journal of Cleaner Production, v. 262, p. 121366, 2020.
YADAV, V. et al. A two-stage multi-attribute decision-making model for selecting appropriate locations of waste transfer stations in urban centers. Waste Management, v. 114, p. 80–88, 2020.
ZIMMERMANN, A. W. et al. Techno-Economic Assessment Guidelines for CO2 Utilization. Frontiers in Energy Research, v. 8, n. January, p. 1–23, 2020.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Dayane Valentina Brumatti, Gisele de Lorena Diniz Chaves, Renato Ribeiro Siman
This work is licensed under a Creative Commons Attribution 4.0 International License.
Creative Commons Copyright Notice
Attribution 4.0 International