DESALTER EFFICIENCY IN REMOVING SALTS FROM BRACKISH WATER IN PERNAMBUCO'S SEMI-ARID REGION
EFICIÊNCIA DE DESSALINIZADORES NA REMOÇÃO DE SAIS DE ÁGUA SALOBRA NO SEMIÁRIDO PERNAMBUCANO
DOI:
https://doi.org/10.29183/2447-3073.MIX2023.v9.n5.17-27Keywords:
Desalination, Electrical Conductivity, Reverse OsmosisAbstract
Water scarcity is a problem in remote locations. The desalination of brackish underground sources through reverse osmosis (RO) is a solution for producing drinking water to meet the needs of the diffuse population. Therefore, the aim was to investigate the quality of desalinated water offered to the population of the municipalities of Cumaru and Riacho das Almas, located in Pernambuco's semi-arid region, through the amount of total dissolved solids (TDS) and electrical conductivity (EC). To this end, visits were made, and permeate and concentrated well water were collected from communities with desalination systems installed and in full use. The results show that 85% of the operating systems in these municipalities have salt removal efficiencies greater than 80%. It was also found that there is no specific minimum salt removal efficiency to achieve the potability of brackish water since the TDS concentrations of brackish sources vary. Thus, desalination systems that use the RO technique for salt removal are efficient for treating brackish water from artesian wells, provided that the equipment has periodic maintenance and presents good operating conditions.
References
Abedi, M. S.; Hashemi, S. H.; Fazeli, M. 2022. Feasibility of Increasing Water Recovery of Inland Reverse Osmosis Systems and the Use of Reject Brine. Arabian Journal for Science and Engineering, v. 47, p. 6525-6534.
Almeida, J. P.; Kummer, A. C. B.; Carranza, G.; Campos, L. C.; Széliga, M. R.; Acevedo, M.; Gevarsoni, R.; Wiecheteck, G. K. 2020. Eficiência de um sistema piloto de dessalinização de água salobra. Engenharia Sanitaria e Ambiental, n.25, p. 107-114.
Almeida, H. A.; Almeida, E. C. V. 2022. Potential of photovoltaic solar energy in the northeastern semi-arid region. Lium Concilium, v. 22, p. 198-210.
Amaral, K. D. S.; Navoni, J. A. 2023. Desalination in rural communities of the Brazilian semi-arid region: Potential use of brackish concentrate in local productive activities. Process Safety and Environmental Protection, v. 169, p. 61-70.
Ashraf, H. M.; Al-Sobhi, S. A.; El-Naas, M. H. 2022. Mapping the desalination journal: A systematic bibliometric study over 54 years. Desalination, n. 526, p. 1-17.
Brasil, Ministério da Saúde. Portaria de Consolidação nº 5, de 28 de setembro de 2017: Consolidação das normas sobre as ações e os serviços de saúde do Sistema Único de Saúde, Anexo XX, p. 454.
Castro, C. N. 2012. Gestão das águas: experiências internacional e brasileira, Instituto de Pesquisa Econômica Aplicada (IPEA), Brasília.
Conselho Nacional De Meio Ambiente(CONAMA), Resolução CONAMA n° 357, de 17 de março de 2005, Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências, Brasília: Diário Oficial da União, 18 de março de 2005.
Cunha, D. P. S.; Pontes, K. V. 2022. Desalination plant integrated with solar thermal energy: A case study for the Brazilian semi-arid. Journal of Cleaner Production, v. 310, p. 1-11.
Darre, N. C.; Toor, G. S. 2018. Desalination of Water: a Review. Current Pollution Reports, n. 4, p. 104-1011.
Filho, W. L.; Totin, E.; Franke, J. A.; Andrew, S. M.; Abubakar, I. R.; Azadi, H.; Nunn, P. D.; Ouweneel, B.; Williams, P. A.; Simpson, N. P. 2022. Understanding responses to climate-related water scarcity in Africa. Science of The Total Environment, v. 806, p. 1-18.
Haguenauer, G. M. 2021. Fontes renováveis de energia no processo de dessalinização para o abastecimento hídrico em zonas rurais vulneráveis do semiárido brasileiro. 2021, 143p. Tese (Doutorado em Planejamento Energético) - Universidade federal do Rio de Janeiro, Rio de Janeiro.
Instituto Brasileiro de Geografia e Estatística, Cidades (IBGE). Available at: https://cidades.ibge.gov.br/ (Accessed on: 24th August 2021).
Jones, E.; Qadir, M.; Van Vliet, M. T. H.; Smakhtin, V.; Kang, S. 2019. The state of desalination and brine production: A global outlook. Science of The Total Environment, v. 657, p. 1343-1356.
Kabir, K. M.; Matin, M. A.; Misran, H.; Amin, N. 2018. Solar photovoltaic assisted cost-efficient brackish water purification system. In: 2018 4th International Conference on Electrical Engineering and Information & Communication Technology (iCEEiCT). Ieee, pp. 510-513.
Li, Y.; Thomas, E. T.; Molina, M. H..; Mann, S.; Walker, W. S.; Lind, M. L.; Perreault, F. 2023. Desalination by membrane pervaporation: A review. Dessalination, v. 547, p. 1-14.
Leon, F.; Vaswani, A. R.; Mendieta, J.; Brito, C. S. 2021. Climate Change Mitigation Strategy through Membranes Replacement and Determination Methodology of Carbon Footprint in Reverse Osmosis RO Desalination Plants for Islands and Isolated Territories. Water, v. 13, p. 1-17.
Lopes, T. M. N. 2018. Caracterização experimental de um dessalinizador de água por membrana polimérica, Trabalho de Conclusão de Curso (Graduação), 2018, Universidade Federal do Rio de Janeiro, Rio de Janeiro.
Moreira, F. S.; Lopes, M. P. C.; Freitas, M. A. V.; Antunes, A. M. D. 2021. Future scenarios for the development of the desalination industry in contexts of water scarcity: A Brazilian case study. Technological Forecasting and Social Change, v. 167, p. 1-9.
Nunes, K. G.; Raimundo N. T. Costa, R. N. T.; Cavalcante, I. N.; Gondim, R. S.; Lima, S. C. R. V.; Mateos, L. 2022. Groundwater resources for agricultural purposes in the Brazilian semi-arid region. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 26, p. 915-923.
Patel, S. K.; Biesheuvel, P. M.; Elimelech, M. 2021. Energy Consumption of Brackish Water Desalination: Identifying the Sweet Spots for Electrodialysis and Reverse Osmosis. ACS ES&T Engineering, n. 1, p. 851-864.
Petersen, K. L.; Paytan, A.; Rahav, E.; Levy, O.; Silverman, J.; Barzel, O.; Potts, D.; Bar-Zeev, E. 2018. Impact of brine and antiscalants on reef-building corals in the Gulf of Aqaba – Potential effects from desalination plants. Water Research, n. 144, p. 183-191.
Regan, P. M.; Kim, H. 2020. Water scarcity, climate adaptation, and armed conflict: insights from Africa. Regional Environmental Change, n. 20, p. 1-14.
Rodrigues, E. A. M.; Coutinho, A. P.; Souza, J. D. S.; Costa, I. R. A.; Neto, S. M. S.; Antonino, A. C. D. 2022. Rural Sanitation: Scenarios and Public Policies for the Brazilian Semi-Arid Region. Sustainability, v. 14, p. 1-18.
Silveira, A. P. P.; Nuvolari, A.; Degasperi, F. T.; Firsoff, W. 2015. Dessalinização de Águas, São Paulo: Oficina de texto.
Stanton, J. S.; Dennehy, K. F. 2017. Brackish groundwater and its potential to augment freshwater supplies, US Department of the Interior, US Geological Survey.
Taha, M.; Al-Sa’Ed, R. 2018. Application potential of small-scale solar desalination for brackish water in the Jordan Valley, Palestine. International Journal of Environmental Studies, v. 75, p.214-225.
Universidade De São Paulo (USP), Manual de procedimentos e técnicas laboratoriais voltado para análises de águas e esgotos sanitário e industrial. São Paulo: Universidade de São Paulo, 2004. Available at: https://7e0ac9a3-5d91-4907-a147583b32e00e48.filesusr.com/ugd/1ecddd_8cac784ef4b645adbb04d80abc54f5e3.pd (Accessed on: 20 November. 2020).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Thamiris Lessa da Silva, Simone Rosa da Silva, Marco Aurelio Calixto Ribeiro de Holanda, Willames de Albuquerque Soares, Manuella Virgínia Salgueiro Gondim, Antonio Celso Dantas Antonino

This work is licensed under a Creative Commons Attribution 4.0 International License.
Creative Commons Copyright Notice
Attribution 4.0 International