ENVIRONMENTAL IMPACT EVALUATION CAUSED BY REINFORCED CONCRETE USED IN BRIDGES
AVALIAÇÃO DO IMPACTO AMBIENTAL CAUSADO POR CONCRETO ARMADO UTILIZADO EM PONTES
DOI:
https://doi.org/10.29183/2447-3073.MIX2023.v9.n3.17-32Keywords:
Life Cycle Assessment, Environmental Impact, Reinforced Concrete, BridgesAbstract
This paper evaluates the environmental impact caused by special structures, in this case, four reinforced concrete bridges. The main objective was to evaluate the impacts considering the production process of their structural elements of reinforced concrete. Bridges are very important infrastructure construction of cities and highways, and they are essential for economy of society. There are not many studies that present results of evaluation of environmental impacts caused by these constructions. In this context, the research was focused on the evaluation of the pre-operational phase of the object that aims to survey the consumption of materials used in the construction of the structural elements of them. A quantitative-qualitative approach was used through the OPENLCA program version 1.11.0 and the database ecoinvent35_APOS_UP_20181210 provided by Ecoinvent. The analysis of the impacts was performed only for the reinforced concrete composite. In this analysis, both steel and concrete presented significant contribution to the degradation of the environment.
References
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR ISO 14040: Gestão ambiental: Avaliação do ciclo de vida: Princípios e estrutura. Rio de Janeiro, 2009a. 30 p.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR ISO 14044: Gestão ambiental: Avaliação do ciclo de vida: Requisitos e orientações. Rio de Janeiro, 2009b. 52 p.
BARE, J.C. et al. Midpoints versus endpoints: The sacrifices and benefits. Int. J. LCA v. 5, n. 319, 2000. DOI: https://doi.org/10.1007/BF02978665
BRASIL. Instituto de Pesquisas Tecnológicas do Estado de São Paulo. Estimativas Anuais de Emissões de Gases de Efeito Estufa no Brasil. 5. ed. Brasília: Ministério da Ciência, Tecnologia, Inovações e Comunicações, 2020. 107 p. ISBN 978-85-88063-91-4
BULLE, C. et al. IMPACT world+: a globally regionalized life cycle impact assessment method. Springer Science and Business Media LLC, v. 24, n. 9, p. 1653-1674, 2019. DOI: https://doi.org/10.1007/s11367-019-01583-0
CHEN, Shilun; DUFFIELD, Colin; MIRAMINI, Saeed; RAJA, Babar Nasim Khan; ZHANG, Lihai. Life-cycle modelling of concrete cracking and reinforcement corrosion in concrete bridges: A case study. Engineering Structures, v. 237, p. 1-11, 2021. DOI: https://doi.org/10.1016/j.engstruct.2021.112143
DU, G. Life cycle assessment of bridges, model development and case studies. 2015. 36 p. Tese (Tese de Doutorado) — Department of Technology and Society, Environmental and Energy Systems Studies, Lund University, Stockholm, Sweden, 2015
GREENDELTA. OpenLCA. 2022. Disponível em: https://www.openlca.org/open-source
ISLAM, H.; JOLLANDS, M.; SETUNGE, S. Life cycle assessment and life cycle cost implication of residential buildings - a review. Elsevier BV, v. 42, p. 129–140, 2015. DOI: https://doi.org/10.1016/j.rser.2014.10.006
JORDAN, M. et al. Global ABC Roadmap for Buildings and Construction. Paris and Nairobi: International Energy Agency and United Nations Environment Programme, 2020. Disponível em: https://globalabc.org/sites/default/files/inline-files/GlobalABC_Roadmap_for_Buildings_and_Construction_2020-2050_3.pdf . Acesso em: 5 dez. 2022.
MARINKOVIC, Snežana; CAREVIC, Vedran; DRAGAŠ, Jelena. The role of service life in Life Cycle Assessment of concrete structures. Journal of Cleaner Production, v. 290, p. 1-15, 2021. DOI: https://doi.org/10.1016/j.jclepro.2020.125610
MATTHEWS, H. S.; HENDRICKSON, C. T.; MATTHEWS, D. H. Life cycle assessment: Quantitative approaches for decisions that matter, 2015. Disponível em: http://lcatextbook.com. Acesso em: 5 dez. 2022.
MOURAD, A. L.; GARCIA, E. E. C.; VILHENA, A. Avaliação do Ciclo de Vida: Princípios e Aplicações. Campinas: CETEA/CEMPRE, 92p. 2002.
PILLAI, Radhakrishna G.; GETTU, Ravindra; SANTHANAM, Manu; RENGARAJU, Sripriya; DHANDAPANI, Yuvaraj; RATHNARAJAN, Sundar; BASAVARAJ, Anusha S. Service life and life cycle assessment of reinforced concrete systems with limestone calcined clay cement (LC3). Cement and Concrete Research, v. 118, p. 111-119, 2019. DOI: https://doi.org/10.1016/j.cemconres.2018.11.019oadFile&recordOId=4468239&fileOId=4469176. Acesso em: 3 jan. 2023.
PRADHAN, Subhasis; POH, Anthony Chang Boon; QIAN, Shunzhi. Impact of service life and system boundaries on life cycle assessment of sustainable concrete mixes. Journal of Cleaner Production, [s. l.], v. 342, p. 1-11, 2022. DOI https://doi.org/10.1016/j.jclepro.2022.130847.
RIBEIRO, C. C.; PINTO, J. D. S.; STARLING, T. Materiais de Construção Civil. 4ª ed. Belo Horizonte: [S.l.: s.n.], 2015. 33-53 p.
SJUNNESSON, J. Life Cycle Assessment of Concrete. 2005. 61 p. Tese (Thesis) — Department of Technology and Society, Environmental and Energy Systems Studies, Lund University, Gerdagatan, 2005.
UNITED NATIONS ORGANIZATION. Launched: 2020 Global Status Report for Buildings and Construction. 2020. Disponível em: https://globalabc.org/news/launched-2020-global-status-report-buildings-and-construction. Acesso em: 3 jan. 2023.
VERONES, Francesca et al. LCIA framework and cross-cutting issues guidance within the UNEPSETAC Life Cycle Initiative. Journal of Cleaner Production, v. 161, p. 957-967, 2017. DOI: https://doi.org/10.1016/j.jclepro.2017.05.206
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.
Creative Commons Copyright Notice
Attribution 4.0 International