DATA MINING AND ECOTOXICITY PREDICTION OF DRILLING FLUIDS – A SYSTEMATIC REVIEW
MINERAÇÃO DE DADOS E PREVISÃO DA ECOTOXICIDADE DE FLUIDOS DE PERFURAÇÃO – UMA REVISÃO SISTEMÁTICA
DOI:
https://doi.org/10.29183/2447-3073.MIX2023.v9.n2.135-156Keywords:
Data mining, ecotoxicology, ecotoxicity, toxicology, toxicity, drilling fluidsAbstract
The ecotoxicologic behaviour of drilling fluids can be understood by the relationship between the fluid ecotoxiciy, its physico-chemical properties and the concentration of its components. As a complex mixture, the components of a drilling fluid interfere in different ways in the mixture toxicity. In a data base that contains ecotoxicity test results of knowed drilling fluids samples, its possible applying data mining aiming prediction and knowledge discovery tha can be used in risk analysis and decision making process. This paper aims to elaborate a systematic review to answer the question: what is the ecotoxicologic behaviour of drilling fluids by data mining? For this, it was used three scientific data bases and the results shown that in silico toxicology has been widly used for toxicity prediction. Althought, there are no studies related to drilling fluids in the data bases used.
References
ASLAN, J. F.; Estudos ecotoxicológicos na perfuração de poços de Petróleo Marítimos com ênfase na atividade de cimentação. Dissertação de Mestrado, Instituto Federal de Ciência e Tecnologia Fluminense. Macaé, 2018. 59f.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). NBR 15308: ecotoxicologia aquática – toxicidade aguda – método de ensaio com misídeos (Crustacea). Rio de Janeiro, 2017.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). NBR 15469: ecotoxicologia – coleta, preservação e preparo de amostras. Rio de Janeiro, 2015.
BAKER HUGHES. Drilling Fluids - Reference Manual. Fonte: Research Gate Website. 775 p, 2016. Disponível em: https://www.researchgate.net/file.PostFileLoader.html?id=5733bd33615e2775127a46b7&assetKey=AS:360698208112640@1463008562446. Acesso em 01 de outubro de 2022.
BAKHTYAR, S; GAGNON, M. Toxicity assessment of individual ingredients of synthetic-based drilling muds (SBMs). Environmental Monitoring and Assessment, v. 184, n. 9, p. 5311 – 5325, 2012.
BRASIL. Ministério do Meio Ambiente. Despacho Nº 5540547/2019, SEI 5533803 de 29 de julho de 2019. Define diretrizes para uso e descarte de fluidos de perfuração e cascalhos, fluidos complementares e pastas de cimento nos processos de licenciamento ambiental dos empreendimentos de perfuração marítima de poços de exploração e produção de petróleo e gás nas atividades de perfuração marítima de poços e produção de petróleo e gás. Brasília: Instituto Nacional do Meio Ambiente e Recursos Naturais Renováveis, 2019. Disponível em: https://sei.ibama.gov.br/controlador_externo.php?acao=usuario_externo_logar&id_orgao_acesso_externo=0. Acesso em 01 de outubro de 2022.
CASTILLO-GARRIT, J. et al. Machine learning-based models to predict modes of toxic action of phenols to Tetrahymena pyriformis. SAR and QSAR in Environmental Research, v. 28, n. 9, p. 735-747, 2017.
CHEN, W. et al. Life cycle toxicity assessment on deep-brine well drilling. Journal of Cleaner Production, v. 112, p. 326 – 332, 2016.
DUAN, Qiannan et al. Machine learning for mixture toxicity analysis based on high-throughput printing technology. Talanta, v. 207, p. 120299, 2020.
DURGUT, I. et. al. Dynamic modeling of environmental risk associated with drilling. Marine Pollution Bulletin, v. 99, n. 1 – 2, p. 240 – 249, 2015.
FAN, Juntal et al. Prediction of chemical reproductive toxicity to aquatic species using a machine learning model: An application in an ecological risk assessment of the Yangtze River, China. Science of the Total Environment, v. 796, p. 148901, 2021.
GAGNON, M. M.; BAKHTYAR, S. Induction of fish biomarkers by synthetic-based drilling muds. PLoS ONE, v. 8, n. 7, p. e69489, 2013.
GE, W. F. et. al. A “dual protection” drilling fluid system and its application. Petroleum Science and Technology, v. 30, n. 12, p. 1274 – 1284, 2012.
IDAKWO, Gabriel et al. A review on machine learning methods for in silico toxicity prediction. Journal of Environmental Science and Health - Part C, v. 36, n.4, p. 169-191, 2019.
LIRA, V. F. et. al. Effects of barium and cadmium on the population development of the marine nematode Rhabditis (Pellioditis) marina. Marine Environmental Research, 72, n. 4, p. 151 – 159, 2011.
MA, Chao Y.; BUONTEMPO, Frances V.; WANG, Xue Z. Inductive data mining: Automatic generation of decision trees from data for QSAR modelling and process historical data analysis. Journal of Modelling, Identification and Control, v. 12, n. 1/2, p. 101-106, 2011.
MISHRA, Meenakshi; FEI, Hongliang; HUAN, Jun. Computational prediction of toxicity. International Journal of Data Mining and Bioinformatics, v. 8, n. 3, p. 338-348, 2013.
MORGER, Andrea et al. Assessing the calibration in toxicological in vitro models with conformal prediction. Journal of Cheminformatics, v. 13, n. 1, 2021.
OGELEKA, D. F.; TUDARARO-AHEROBO, L. E. Short-term toxicity of oil-based drilling fluid to the brackish-water shrimp Palaemonetes africanus. African Journal of Aquatic Science, v. 36, n.1, p. 109 – 112, 2011.
PAGE, M.J.; McKENZIE, J. E.; BOSSUYT, P.M.; BOUTRON I.; HOFFMAN, T.C.; MULROW, C. D. et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, v. 372, n. 71, 2021.
PÉREZ SANTÍN, Efrén et al. Toxicity prediction based on artificial intelligence: A multidisciplinary overview. Wiley Interdisciplinary Reviews Computational Molecular Science, v. 99, n. 11, 2021.
QU, Y. et. al. Influence of various hydrocarbon groups on the effectiveness and enviromental characteristics of anti-collapse agent for drilling fluids. Chemistry and Tecnology of Fuels and Oils, v. 56, n 3, p. 420 – 428, 2020.
SADIQ, R. et. al. Marine water quality assessment of synthetic-based drilling waste discharges. International Journal of Environmental Studies, v. 60, n.4, p. 313 – 323, 2003.
SHADRIN, Dmitrii et al. Artificial intelligence models to predict acute phytotoxicity in petroleum contaminated soils. Ecotoxicology and Environmental Safety, v. 194, p. 110410, 2020.
SHERHOD, Richard et. al. Emerging pattern mining to aid toxicological knowledge discovery. Journal of Chemical Information and Modeling, v. 54, n. 7, p. 1864-1879, 2014.
STELIGA, T; ULIASZ, M. Spent drilling muds management and natural environment protection. Mineral Resources Management, v. 30, n. 2, p. 135 – 159, 2014.
SIL, A. et. al. Toxicity characteristics of drilling mud and its effect on aquatic fish populations. Journal of Hazardous, Toxic, and Radioactive Waste, v. 16, n.1, p. 51 – 57, 2012.
SUN, Y. et. al. Study on a New Environmentally Friendly Synthetic Fluid for Preparing Synthetic-Based Drilling Fluid. Frontiers in Chemistry, v. 8:539690, 2020.
TAKATA, Michiyoshi et al. Predicting the acute ecotoxicity of chemical substances by machine learning using graph theory. Chemosphere, v. 238, p. 124604, 2020.
TANG, Weihao et al. Deep learning for predicting toxicity of chemicals: a mini review. Journal of Environmental Science and Health - Part C, v. 36, n. 4, p. 252-271, 2019.
VEIGA, L. F. Estudo da toxicidade marinha de fluidos de perfuração de poços de óleo e gás. Dissertação de Mestrado, Instituto de Biologia Marinha, Universidade Federal Fluminense, Niterói, 1998. 120 f.
VEIGA, L. F. Avaliação de risco ecológico dos descartes da atividade de perfuração de poços de óleo e gás em ambientes marinhos. Tese de Doutorado, Coordenação dos Programas de Pós-graduação em Engenharia, Programa de Engenharia Civil, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2010. 253f.
VINCENT-AKPU, I. F.; ALLISON, M. E.; SIKOKI, F. D. Survival and gill morphology of different life
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Leomir Samuel Tormen Reis, Victor Barbosa Saraiva, Simone Vasconcelos Silva

This work is licensed under a Creative Commons Attribution 4.0 International License.
Creative Commons Copyright Notice
Attribution 4.0 International