VEGETABLE AND ANIMAL BIOMASS COMPARSION IN BIOMORTAR

Authors

DOI:

https://doi.org/10.29183/2447-3073.MIX2021.v7.n4.31-38

Keywords:

Biocementation, Biomineralization, Bio-mortar, Organic matter, Sporosarcina pasteur

Abstract

The use of microorganisms in liquid medium for the biocementation process, favors the continuity of bacterial growth. However, if it takes too long to use, it stops growing rapidly, leading to cell death. This study compared two forms of biomass production, capable of storing microorganisms in a latent state, maintaining viability for later use. Here we described the preparation of biomasses, made with organic materials and bacteria Sporosarcina pasteurii (CCT 0538 ATCC 1185). Animal (poultry manure) and vegetable (vetch - Vicia villosa Roth) biomasses were tested. Both biomasses maintained the viability of the microorganisms, and the vegetable was more efficient, presenting greater bacterial growth after revitalization. For testing, reference specimens were molded (without biomass) and also with each one of them, and after 28 days tested for traction and compression. The tensile strength showed an increase of 41.2% (animal biomass) and 44.7% (plant biomass). In the compressive strength, the increase was 37.8% (animal biomass) and 38.8% (vegetable biomass), compared to the reference mortar (without the addition of a microorganism)

Author Biographies

Jupira Almeida, Universidade de Passo Fundo

Doutoranda do Programa de Pós-Graduação em Engenharia Civil e Ambiental - PPGEng

Antonio Thome, Universidade de Passo Fundo

Professor Titular do Programa de Pós-Graduação em Engenharia Civil e Ambiental - PPGEng

Fabiana Tonial, Universidade de Passo Fundo

Professora do Programa de Pós-Graduação em Agronomia - PPGAgro

Roberto De Martini, Universidade Tecnológica Federal do Paraná

Mestrando do Programa de Pós-Graduação em Engenharia Civil - PPGEC

References

ACHAL, Varenyam; MUKERJEE, Abhijeet. A review of microbial Precipitation for sustainable construction. Construction and Building Materials. Vol. 93, may 2015, pg. 1224-1235. doi.org/10.1016/j.conbuildmat.2015.04.051. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0950061815005000>. Acesso em: 24 jun. 2016.

AFIFUDIN, H. et al. (2011). Microbial participation in the formation of calcium silicate hydrated (CSH) from bacillus subtilis. Paper presented at the Procedia Engineering, , 20 159-165. doi:10.1016/j.proeng.2011.11.151

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. 13279: Argamassa para assentamento e revestimento de paredes e tetos - Determinação da resistência à tração na flexão e à compressão. 1 ed. Rio de Janeiro: Moderna, 2005.

BHADURI, Swayamdipta; DEBNATH, Nandini; MITRA, Sushanta; LIU, Yang; KUMAR, Aloke. Precipitação de calcite induzida microbiologicamente mediada por Sporosarcina pasteurii. Journal of Visualized Experiments. 2016; (110): 53253. Doi: 10.3791/53253. Disponível em <https://www.ncbi.nlm.nih.gov/pubmed/27167458>. Acesso em: s03 set. 2019.

BANG, Sookie S.; GALINAT, Johnna K.; RAMAKRISHNAN, V.. Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii. Enzyme And Microbial Technology, Rapid City, v. 28, n. 2, p.402-409, 17 out. 2000. Disponível em:

. Acesso em: 17 out. 2000.

COSTA, João José Soares. Biotecnologia e Biomimetismo: Contributos Inovadores para a Ecoeficiência da Indústria da Construção. Dissertação de mestrado em Engenharia Civil. Universidade do Minho. Braga, Portugal, 2014. Disponível em:

<http://repositorium.sdum.uminho.pt/handle/1822/36246>, acesso em: 22 fev. 2016.

DE MUYNCK, Willem; DE BELIE, Nele; VERSTRAETE, Willy. Microbial carbonate precipitation in construction materials: A review. Eccological Engineering 36, pg. 118-136. Belgium, 2010.

DHAMI, N. K. et al. (2013). Viability of calcifying bacterial formulations in fly ash for applications in building materials. Journal of Industrial Microbiology and Biotechnology, 40(12), 1403-1413. doi:10.1007/s10295-013-1338-7

FERREIRA, Paulo Ademar Avelar et al. Biomass decomposition and nutrient release from black oat and hairy vetch residues deposited in a vineyard. Revista Brasileira de Ciência do Solo, Bento Gonçalves, v. 1, n. 38, p. 1621-1632, fev. 2014.

IVANOV, V. K. et al. (2016). Using extraction and sorption processes to obtain nanosized powders of calcium silicates and functional materials on their basis. Theoretical Foundations of Chemical Engineering, 50(4), 490-497. doi:10.1134/S0040579516040023. Disponível em:

MCIP (org.). Ministério da Ciência, Tecnologia, Inovações e Comunicações. 2014. Disponível em:

<https://antigo.mctic.gov.br/mctic/opencms/institucional/paginaInstitucional.html>. Acesso em: 02 fev. 2014.>

RAMAKRISHNAN, V.. Performance characteristics of bacterial concrete - A smart biomaterial. Anais da 1ª Conferência Internacional sobre Recentes Avanços na Tecnologia do Concreto, RAC 2007, Páginas 67-78. 1ª Conferência Internacional sobre Avanços Recentes na Tecnologia do Concreto, RAC 2007; Sheraton em Crystal City Washington; Estados Unidos; 19 a 21 de setembro de 2007; Código 111076. Disponível em:<https://www.tib.eu/en/search/id/tema%3ATEMA20080507849/Performance- characteristics-of-bacterial-concrete/>. Acesso em: 28 abr. 2018.

SANTINATO, R. et al. Doses de esterco de peru na substituição parcial – proporcional das adubações NPKS mineral na produção do cafeeiro. In: CONGRESSO BRASILEIRO DE PESQUISAS CAFEEIRAS, 38., 2012, Caxambu. Anais... Brasília, DF: Embrapa Café, 2012. (1 CD-ROM), 2 p. <https://www.sciencedirect.com/science/article/pii/S0950061815005000>. Acesso em: 24 jun. 2016.

Published

2021-08-23

How to Cite

Almeida, J., Thome, A., Tonial, F., & De Martini, R. (2021). VEGETABLE AND ANIMAL BIOMASS COMPARSION IN BIOMORTAR. ix Sustentável, 7(4), 31–38. https://doi.org/10.29183/2447-3073.MIX2021.v7.n4.31-38