MATERIAIS VIVOS, O CASO DA CELULOSE BACTERIANA: REVISÃO BIBLIOGRÁFICA DA APLICAÇÃO NO DESIGN INDUSTRIAL, ARQUITETURA E MODA
DOI:
https://doi.org/10.29183/2447-3073.MIX2021.v7.n4.71-82Palavras-chave:
Biodesign, Materiais Vivos, Biofabricação, Celulose BacterianaResumo
O Design com materiais vivos, em que participam outros organismos na materialização dos artefatos, traz novas possibilidades e desafios teóricos e práticos. No recorte do design envolvendo bactérias, esta pesquisa tem como objetivo levantar e mapear as perspectivas e aplicações da celulose bacteriana no design industrial, arquitetura e moda. O procedimento metodológico é a revisão sistemática que resultou na análise de 27 trabalhos acadêmicos e 16 depósitos de patentes nacionais e internacionais. Como resultado sumarizam-se as aplicações relatadas e prospectadas. Os destaques estão nas aplicações têxteis e nos processos de cultivo, conformação e acabamentos. São relatadas as dificuldades e discutidas oportunidades para os designers com estes materiais.
Referências
BLOCH, C. Design Potential of Microbial Cellu-lose in Growing Architecture. 2019. 91p. Dis-sertação - Chalmers School of Architecture. De-partment of Architecture and Civil Engineering. Göteborg, 2019.
CAMERE, S.; KARANA, E. Fabricating materials from living organisms: An emerging design prac-tice. Journal of Cleaner Production, v. 186, p. 570–584, 2018.
CAMERE, S.; KARANA, E. Growing materials for product design. Alive. Active. Adaptive: Internati-onal Conference on Experiential Knowledge and Emerging Materials, EKSIG 2017, Delft. Anais... Delft, 2017. p.101–115.
CARO-ASTORGA, J.; WALKER, K.; ELLIS, T. Bacterial cellulose spheroids as building blocks for 2D and 3D engineered living materials. bioR-xiv, 2020. doi: https://doi.org/10.1101/2020.05.11.088138 2020.
CONFORTO, E. C.; AMARAL, D. C.; SILVA, S. L. da. Roteiro para revisão bibliográfica sistemá-tica: aplicação no desenvolvimento de produtos e gerenciamento de projetos. In: 8º Congresso Brasileiro de Gestão e Desenvolvimento de Pro-duto – CBGDP, 2011, Porto Alegre. Anais... Por-to Alegre, 2011. 12p.
COSTA, P. Z. R. da.; BIZ, P. Cultivando materi-ais: o uso da celulose bacteriana no design de produtos. In: 3o Simpósio de Pós-Graduação Em Design da Esdi Rio, 2017, Rio de Janeiro. Anais..., Rio de Janeiro, 2017.13p.
DAMSIN, B. Bacterial cellulose. New bio-composites based on bacterial cellulose for architectural membrane applications. 2019, 141p. Dissertação - Université Libre de Bruxel-les. Bruxelas, 2019.
DERME, T.; MITTERBERGER, D.; DI TANNA, U. Growth based fabrication techniques for bac-terial cellulose. In: ACADIA 2016: Posthuman Frontiers: Data, Designers, and Cognitive Machi-nes - Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture, 2016, Ann Arbor. Anais... Ann Ar-bor, 2016. p. 488–495.
DOMSKIENE, J.; SEDERAVICIUTE, F.; SIMO-NAITYTE, J. Kombucha bacterial cellulose for sustainable fashion. International Journal of Clothing Science and Technology, v. 31, n. 5, p. 644–652, 2019.
FILLAT, A.; MARTÍNEZ, J.; VALLS, C.; et al. Bacterial cellulose for increasing barrier proper-ties of paper products. Cellulose, v. 25, n. 10, p. 6093–6105, 2018.
GARCÍA, C.; PRIETO, M. A. Bacterial cellulose as a potential bioleather substitute for the footwe-ar industry. Microbial Biotechnology, v. 12, n. 4, p. 582–585, 2019.
HARMON, J.; FAIRBOURN, L.; THIBAULT, N. Exploring the Potential of Bacterial Cellulose for Use in Apparel. Journal of Textile Science & Fashion Technology, v. 5, n. 2, p. 1–9, 2020.
HUANG, Y.; ZHU, C.; YANG, J.; et al. Recent advances in bacterial cellulose. Cellulose, v. 21, n. 1, p. 1–30, 2014.
HÜLSEN, J. Xylium Stool. 2011. Disponível em: <http://www.jannishuelsen.com/?/work/xyliumstool/>. Acesso em: 02 jan 2021.
INPI - Instituto Nacional da Propriedade Industri-al. Ferramenta de busca de patentes. Disponível em < https://www.gov.br/inpi/pt-br>. Acesso em 07 jan. 2021.
KAMIŃSKI, K.; JAROSZ, M.; GRUDZIEŃ, J.; et al. Hydrogel bacterial cellulose: a path to impro-ved materials for new eco-friendly textiles. Cellu-lose, v. 27, n. 9, p. 5353–5365, 2020.
KARANA, E.; BLAUWHOFF, D.; HULTINK, E. J.; CAMERE, S. When the material grows: A case study on designing (with) mycelium-based mate-rials. International Journal of Design, v. 12, n. 2, p. 119–136, 2018.
LATIPAT. Ferramenta de busca de patentes. Disponível em: < https://lp.espacenet.com/?locale=pt_LP >. Aces-so em 07 jan. 2021.
LEGNANI, C.; BARUD, H. S.; CAIUT, J. M. A.; et al. Transparent bacterial cellulose nanocomposi-tes used as substrate for organic light-emitting diodes. Journal of Materials Science: Materials in Electronics, v. 30, n. 18, p. 16718–16723, 2019.
LIVING COLOUR. Biodesign research project. 2017. Disponível em: <https://livingcolour.eu/> Acesso em: 24 set 2020.
MIHALEVA, G. Bio matter in creative practices for fashion and design. AI and Society, Springer London, n. 0123456789, 2020.
MODERN SYNTHESIS. Microbial Weaving. 2020. Disponível em: <https://modern-synthesis.com/microbial-weaving/> Acesso em: 02 jan 2021.
NG, A. Grown microbial 3D fiber art, ava: Fusion of traditional art with technology.In: Proceedings - International Symposium on Wearable Compu-ters, ISWC, 2017, Maui. Anais... Maui, 2017 v. Part F130534, p. 209–214.
NG, F. M. C.; WANG, P. W. Natural Self-grown Fashion From Bacterial Cellulose: A Paradigm Shift Design Approach In Fashion Creation. De-sign Journal, v. 19, n. 6, p. 837–855, 2016.
NG, M. C. F.; WANG, W. A Study of the Recepti-vity to Bacterial Cellulosic Pellicle for Fashion. Research Journal of Textile and Apparel, v. 19, n. 4, p. 65–69, 2015.
NIYAZBEKOVA, Z. T.; NAGMETOVA, G. Z.; KURMANBAYEV, A. A. An Overview of Bacterial Cellulose Applications. Biotechnology. Theory and practice, p.1–16, 2018.
RAHMAN, M. M.; NETRAVALI, A. N. Aligned Bacterial Cellulose Arrays as “green” Nanofibers for Composite Materials. ACS Macro Letters, v. 5, n. 9, p. 1070–1074, 2016.
RATHINAMOORTHY, R.; KIRUBA, T. Bacterial cellulose-A potential material for sustainable eco-friendly fashion products. Journal of Natural Fibers, v. 00, n. 00, p. 1–13, 2020.
SMITH, R. S. H.; BADER, C.; SHARMA, S.; et al. Hybrid Living Materials: Digital Design and Fa-brication of 3D Multimaterial Structures with Pro-grammable Biohybrid Surfaces. Advanced Func-tional Materials, v. 30, n. 7, p. 1–14, 2020.
STROBEL do NASCIMENTO, Elisa; HEEMANN, A.Perspectivas em design e materiais vivos: discussão da literatura. In: Gampi + Plural De-sign 2020, 2020, Joinville. Anais Gampi + Plural Design 2020. Anais... Joinville: Editora Univille, 2020. p. 240-253.
STROBEL, E.; LAU, G. M.; ISHIY, F. C.; HEE-MANN, A. Design e materiais vivos: perspecti-vas e aplicações da celulose bacteriana no de-sign industrial, arquitetura e moda. In: Anais [do] ENSUS 2021 - IX - Encontro de Sustentabilidade em Projeto. 2021, Florianópolis. Anais... Floria-nópolis, 2021. v. 9. p. 19-30.
SHUNK, G. K.; GOMEZ, X. R.; AVERESCH, N. J. H. A Self-Replicating Radiation-Shield for Hu-man Deep-Space Exploration: Radiotrophic Fungi can Attenuate Ionizing Radiation aboard the In-ternational Space Station. bioRxiv, p. 205534, 2020.
TED. Suzanne Lee: Cultive suas próprias roupas. 2011. Disponível em: <https://www.youtube.com/watch?v=3p3-vl9VFYU>. Acesso em: 02 jan 2021.
URAKI, Y.; NEMOTO, J.; OTSUKA, H.; et al. Honeycomb-like architecture produced by living bacteria, Gluconacetobacter xylinus. Car-bohydrate Polymers, v. 69, n. 1, p. 1–6, 2007
USPTO - United States Patent and Thendmark. Ferramenta de busca de patentes. Disponível em: < https://www.uspto.gov/ >. Acesso em 07 jan. 2020.
VELÁSQUEZ-RIAÑO, M.; BOJACÁ, V. Produc-tion of bacterial cellulose from alternative low-cost substrates. Cellulose, v. 24, n. 7, p. 2677–2698, 2017.
WOOD, J. Bioinspiration in Fashion—A Review. Biomimetics, v. 4, n. 1, p. 16, 2019.
YIM, S. M.; SONG, J. E.; KIM, H. R. Production and characterization of bacterial cellulose fabrics by nitrogen sources of tea and carbon sources of sugar. Process Biochemistry, v. 59, p. 26–36, 2017.
ZOLOTOVSKY, K. BioConstructs – Methods for Bio-Inspired and Bio-Fabricated Design. 2012, 72p. Dissertação - Master of Science in Architecture Studies at the Massachusetts Insti-tute of Technology. Cambridge, 2012.
ZOLOTOVSKY, K.; GAZIT, M.; ORTIZ, C. Guid-ed Growth of Bacterial Cellulose Biofilms. In: 7th International Conference on Biomimetic and Bio-hybrid Systems, Living Machines (LM), 2018, Paris. Anais.... Paris, 2018. p.538–548.
Downloads
Arquivos adicionais
Publicado
Como Citar
Edição
Seção
Licença
Aviso de Direito Autoral Creative Commons
1. Política para Periódicos de Acesso Livre
Autores que publicam nesta revista concordam com os seguintes termos:
a. Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
b. Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
c. Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto após o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).