INFLUENCE OF HIGH TEMPERATURES ON THE COMPRESSIVE STRENGTH OF IRON ORE WASTE/CEMENT COMPOSITE
INFLUENCE OF HIGH TEMPERATURES ON THE COMPRESSIVE STRENGTH OF IRON ORE TAILINGS/CEMENT COMPOSITE
DOI:
https://doi.org/10.29183/2447-3073.MIX2024.v10.n1.125-136Keywords:
Iron ore tailings, cement, compressive strength, high temperatures, sustainability, thermal effectsAbstract
The objective of this study is to analyze the compressive strength and mass loss of mortars produced with iron ore tailings (IOT) and cement when subjected to high temperatures. The test specimens (TSs) were exposed to different temperature levels (100°C to 1100°C) and subsequently subjected to axial compression tests. The results showed that with increasing temperature, there was a loss of strength. The loss of strength exhibited a linear trend and became more pronounced after 350°C. The TSs subjected to 1100°C exhibited an 80% loss of strength, while the mass loss was less than 5%. One of the contributions of this study, in line with current research, is to emphasize the importance of composites (IOT/cement) as a sustainable and economically viable alternative, given that iron ore tailings are generated in large quantities during the beneficiation process. Another contribution is to demonstrate that these composites can result in mortars with a significant reduction in compressive strength and a small mass loss when exposed to high temperatures. Furthermore, it highlights that they meet all performance and safety requirements in fire situations, making them a non-combustible product.
References
ALARCON-RUIZ, L.; MASSIEU, E.; PLATRET, G.; EHRLACHER, A. The use of thermal analysis in assessing the effect of temperature on a cement paste. Cement and Concrete Research, v. 35, n. 3, p. 609-613, 2005. DOI:https://doi.org/10.1016/j.cemconres.2004.06.015
ALI, S. I .A., LUBLÓY, É. Fire resistance properties of heavyweight magnetite concrete in comparison with normal basalt- and quartz-based concrete. Journal of Thermal Analysis and Calorimetry, v. 147, p. 11679-11691, 2022. DOI: https://doi.org/10.1007/s10973-022-11407-3
ALMADA, B. S.; MELO, H. S. S.; DUARTE, M. S.; MARIA TERESA PAULINO B, DAYANA CRISTINA AGUILAR, S. G.; SILVA, G. J. B.; SANTOS, W. J. Study of mechanical, durability and microstructural properties of cementitious composite with addition of different iron ore tailings from Brazil. Journal of Materials Research and Technology, v. 18, p. 1947-1962, 2022. DOI:https://doi.org/10.1016/j.jmrt.2022.03.070.
ALMADA. B. S.; SILVA, G. A.; AGUILAR ,T. P.; GARCIA, D. C. S.; SILVA, G. J. B.; SANTOS, W. J. Evaluation of the microstructure and micromechanics properties of structural mortars with addition of iron ore tailings, Journal of Building Engineering, v. 63, part A, 105405, 2023. DOI:https://doi.org/10.1016/j.jobe.2022.105405
AL-SHWAITER, A.; AWANG, H. Effect of elevated temperatures on strength and microstructural characteristics of foam concrete containing palm oil fuel ash as sand replacement. Construction and Building Materials, v. 376, n. 2, 131052, 2023. DOI:https://doi.org/10.1016/j.conbuildmat.2023.131052
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 13279: Argamassa para assentamento e revestimento de paredes e tetos - Determinação da resistência à tração na flexão e à compressão. Rio de Janeiro, p. 9. 2005.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 14432: Exigências de resistência ao fogo de elementos construtivos de edificações – Procedimento. Rio de Janeiro, p. 14. 2001.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 5628: Componentes construtivos estruturais - Ensaio de resistência ao fogo. Rio de Janeiro, p. 65. 2022.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 7215: Cimento Portland - Determinação da resistência à compressão de corpos de prova cilíndricos. Rio de Janeiro, p. 12. 2019.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 9442: Materiais de construção - Determinação do índice de propagação superficial de chama pelo método do painel radiante. Rio de Janeiro, p. 20. 2019.
BACARJI, E. Sustainability perspective of marble and granite residues as concrete fillers. Construction and Building Materials, v. 45, p 1-10, 2013. DOI:https://doi.org/10.1016/j.conbuildmat.2013.03.032
BAI, Y.; SUN, J.; ZHANG, R. Bonding Performance and Thermomechanical Coupling Analysis of Iron Ore Tailings Reinforced Concrete. International Journal of Heat and Technology, v. 40, n. 1, p. 193-200, 2022. DOI:https://doi.org/10.18280/ijht.400123
BALAJI, C. R.; AZEVEDO, A. R. G.; MADURWAR, M. Sustainable perspective of ancillary construction materials in infrastructure industry: An overview. Journal of Cleaner Production, v. 365, n. 10, 132864, 2022. DOI:https://doi.org/10.1016/j.jclepro.2022.132864
CAMPOLINA, V. F.; BRETAS, M. G.; CARVALHO, F. A.; COSTA, R. O. B.; PRAT, B. V. Incorporação de Resíduos Siderúrgicos à Confecção de Blocos de Solo-Cimento. Mix Sustentável, v. 9, n. 3, p. 83-100, 2023. DOI:https://doi.org/10.29183/2447-3073.MIX2023.v9.n3.83-100
CARRASCO, E. V. M.; MAGALHAES, M. D. C.; SANTOS, W. J. D.; ALVES, R. C.; MANTILLA, J. N. R. Characterization of mortars with iron ore tailings using destructive and nondestructive tests. Construction and Building Materials v. 131, n. 30, p. 31-38, 2017. DOI: https://doi.org/10.1016/j.conbuildmat.2016.11.065
CHEN, Z.; CHEN, S.; ZHOU, Y.; ZHANG, C.; MENG, T.; JIANG, S.; LIU, L.; HU, G. Effect of incorporation of rice husk ash and iron ore tailings on properties of concrete. Construction and Building Materials, v. 338, n. 4, 127584, 2022. DOI:https://doi.org/10.1016/j.conbuildmat.2022.127584
DAHISH, H. A.; ALMUTAIRI, A. D. Effect of elevated temperatures on the compressive strength of nano-silica and nano-clay modified concretes using response surface methodology. Case Studies in Construction Materials, v. 18, e02032, 2023. DOI: https://doi.org/10.1016/j.cscm.2023.e02032
DAHISH, H. A.; ALMUTAIRI, A. D. Effect of elevated temperatures on the compressive strength of nano-silica and nano-clay modified concretes using response surface methodology. Case Studies in Construction Materials, v. 18, e02032, 2023. DOI:https://doi.org/10.1016/j.cscm.2023.e02032
DUARTE, M. S.; ALMADA, B. S.; SANTOS, W. J.; BESSA, S. A. L.; BEZERRA, A. C. S.; AGUILAR, M. T. P. Influence of mechanical treatment and magnetic separation on the performance of iron ore tailings as supplementary cementitious material. Journal of Building Engineering, v. 59, p. 105099, 2022. DOI:https://doi.org/10.1016/j.jobe.2022.105099.
FIGUEIREDO, R. A. M.; SILVEIRA, A. B. M.; MELO, E. L. P.; COSTA, G. Q. G.; BRANDÃO, P. R. G.; AGUILAR, M. T. P.; HENRIQUES, A. B.; MAZZINGHY, D. B. Mechanical and chemical analysis of one-part geopolymers synthesized with iron ore tailings from Brazil. Journal of Materials Research and Technology, v. 14, p. 2650-2657, 2021. DOI:https://doi.org/10.1016/j.jmrt.2021.07.153
GAO, F-RONG; JIA, YONG-SHENG; MA, ZHAN-GUO; ZHANG, ZHONG-ZHE; ZHANG, J.; XUE, Q. Improvement effect of a double-level phase change material on compressive strengths of Portland cementitious materials after elevated temperatures. journal of Sustainable Cement-Based Materials, v. 12, n. 6, p. 661–671, 2023. DOI:http://dx.doi.org/10.1080/21650373.2022.2109773
INTERNATIONAL STANDARD. ISO 1182: Reaction to fire tests for products - Non-combustibility test. Paris, p. 125. 2020.
JHATIAL, A.A.; NOVÁKOVÁ, I.; GJERLØW, E. A Review on Emerging Cementitious Materials, Reactivity Evaluation and Treatment Methods. Buildings, v, 13, 526. 2023. DOI:https://doi.org/10.3390/buildings13020526
LI, Q.; LIU, P.; WANG, M.; XIA, H.. Effects of elevated temperature on the mechanical properties of concrete with aggregate of waste porcelain tile, Journal of Building Engineering, Volume 64, n. 1, 105585, 2023. DOI:https://doi.org/10.1016/j.jobe.2022.105585
LI, W.; LEI, G.; XU, Y.; HUANG, Q. The properties and formation mechanisms of eco-friendly brick building materials fabricated from low-silicon iron ore tailings. Journal of Cleaner Production, v. 204, n. 10, p. 685-692, 2018. DOI:https://doi.org/10.1016/j.jclepro.2018.08.309
MD AZREE, O.M. Evaluation of the Mechanical Properties of Lightweight Foamed Concrete at Varying Elevated Temperatures. Fire, Basel, v. 6, n. 2, 53, 2023. DOI:https://doi.org/10.3390/fire6020053
PAYÁ, J.; MONZÓ, J.; BORRACHERO, M. V.; VELÁZQUEZ, S. Evaluation of the pozzolanic activity of fluid catalytic cracking catalyst residue (FC3R). Thermogravimetric analysis studies on FC3R-Portland cement pastes. Cement and Concrete Research, v. 33, p. 603-609 2003. DOI:https://doi.org/10.1016/S0008-8846(02)01026-8
RAMZI, S.; MORADI, M. J.; HAJILOO, H. The Study of the Effects of Supplementary Cementitious Materials (SCMs) on Concrete Compressive Strength at High Temperatures Using Artificial Neural Network Model. Buildings. v. 13, n. 5, 1337, 2023. DOI: https://doi.org/10.3390/buildings13051337
SANTOS, W. J.; ALVARENGA, R. C. S. S.; PEDROTI, L. G.; SILVA, R. C.; FREIRE, A. S.; MORAES, B. A.; CARVALHO, C. C. Proposta de método de dosagem para argamassas de revestimento com areia artificial de britagem. Ambiente Construído, Porto Alegre, v. 18, n. 1, p. 225-243. 2018. DOI:http://dx.doi.org/10.1590/s1678-86212018000100218
TANG, C.; LI, K.; NI, W; FAN, D. Recovering Iron from Iron Ore Tailings and Preparing Concrete Composite Admixtures. Minerals. v. 9, n. 4, 232, 2019. DOI:https://doi.org/10.3390/min9040232
TAURINO, R.; BONDIOLI, F.; MESSORI, M. Use of different kinds of waste in the construction of new polymer composites: review. Materials Today Sustainability, v. 21, n. 3, 100298, 2023. DOI: https://doi.org/10.1016/j.mtsust.2022.100298
ZHANG, D., TAN, K. Fire performance of ultra-high performance concrete: effect of fine aggregate size and fibers. Archives of Civil and Mechanical Engineering, v. 22, n. 116, p. 1-14, 2022. DOI:https://doi.org/10.1007/s43452-022-00430-8
ZHAO, S. J.; FAN, J.J.; SUN, W. Utilization of iron ore tailings as fine aggregate in ultra-high performance concrete. Construction and Building Materials, v. 50, p. 540-548. 2014. DOI:https://doi.org/10.1016/j.conbuildmat.2013.10.019
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Edgar Vladimiro Mantilla Carrasco, Judy Norka Rodo Mantilla, Eliene Pires Carvalho, Marco Antônio Penido de Rezende, Rejane Costa Alves, Maria Teresa Gomes Barbosa, White José dos Santos
This work is licensed under a Creative Commons Attribution 4.0 International License.
Creative Commons Copyright Notice
Attribution 4.0 International