CARACTERIZAÇÃO DO SISTEMA BINÁRIO DE RESÍDUO CERÂMICO E METACAULIM ÁLCALI-ATIVADO
CHARACTERIZATION OF A BINARY ALKALI-ACTIVATED SYSTEM BASED ON CERAMIC WASTE AND METAKAOLIN
DOI:
https://doi.org/10.29183/2447-3073.MIX2025.v11.n2.109-122Palavras-chave:
Construção civil; resíduo; pasta; cimento álcali-ativadoResumo
A indústria da cerâmica vermelha é uma grande geradora de resíduos sólidos, que podem ser reaproveitados na construção civil, reduzindo o consumo de recursos naturais e a emissão de CO₂ pela indústria do cimento Portland. No entanto, a aplicação de resíduos de cerâmica vermelha como precursor de materiais álcali-ativados ainda é pouco explorada. Este estudo tem o objetivo de avaliar a mistura binária de resíduo de cerâmica vermelha (RCV) e metacaulim (MK) para obtenção de cimentos álcali-ativados. Foram produzidas quatro pastas com proporções variadas do RCV e MK. No estado fresco, realizaram-se ensaios de mini-slump, tempo de pega e massa específica. No estado endurecido, analisaram-se a resistência à compressão, nas idades de 7, 28 e 91 dias, e a absorção de água. Por fim, foi feito o ensaio de Microscopia Eletrônica de Varredura (MEV). A pasta com 100% RCV apresentou maior espalhamento de 94,5 mm e a composição com 75% MK e 25% RCV apresentou a maior resistência à compressão, com 42,79 MPa aos 7 dias. A formação de géis aglomerantes foi observada no MEV. Dessa forma, confirma-se a viabilidade do cimento álcali-ativado com RCV e MK para pastas cimentícias.
Referências
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 16607:2017 – Cimento Portland – Determinação dos tempos de pega. Rio de Janeiro, 2017.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 16605:2017 – Cimento Portland e outros materiais em pó – Determinação da massa específica. Rio de Janeiro, 2017.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 16372:2015 - Cimento Portland - Determinação da finura - Método de Blaine. Rio de Janeiro, 2015.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 13279:2005 - Cimento Portland - Determinação da resistência à compressão. Rio de Janeiro, 2005.
ASTM INTERNATIONAL. ASTM C1585-09 - Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes. West Conshohocken, 2009.
ALHAWAT, M. et al. A study on the influencing parameters in developing construction and demolition waste-based geopolymer concretes and their sustainability assessment. Construction and Building Materials, v. 426, p. 136143, 3 maio 2024. Disponível em: https://doi.org/10.1016/j.conbuildmat.2024.136143.
ALMEIDA, K. S. DE; SOARES, R. A. L.; MATOS, J. M. E. DE. Efeito de resíduos de gesso e de granito em produtos da indústria de cerâmica vermelha: revisão bibliográfica. Matéria (Rio de Janeiro), v. 25, n. 1, 2020.
ARAUJO, Lucas Benício Rodrigues. Caracterização de misturas álcali-ativadas à base de cinza volante e escória de aciaria. Dissertação em desenvolvimento (Mestrado em Engenharia Civil), Programa de Pós-Graduação em Engenharia Civil: Estruturas e Construção Civil, Universidade Federal do Ceará, Fortaleza, 2022.
ASSOCIAÇÃO BRASILEIRA DE CERÂMICA. ABCERAM. Processo de fabricação. Setor. São Paulo, 2009. Disponível em https://abceram.org.br/processo-de-fabricacao/. Acesso em 05 de abril de 2024.
Azevedo, ARG, Vieira, CMF, Ferreira, WM, Faria, KCP, Pedroti, LG, & Mendes, BC (2020). Potential use of ceramic waste as precursor in the geopolymerization reaction for the production of ceramic roof tiles. Journal of Building Engineering, 29. doi:10.1016/j.jobe.2019.101156.
A. G. DE S. AZEVEDO, K. STRECKER, C. T. LOMBARDI. Produção de geopolímeros à base de metacaulim e cerâmica vermelha. v. 64, n. 371, p. 388–396, 1 set. 2018. . Disponível em: https://www.scielo.br/j/ce/a/NXBhYRkFNXVwqZsFjJMshnP/?utm_source=chatgpt.com. Acesso em: 7 fev. 2025.
A. GHARZOUNI, E. JOUSSEIN, B. SAMET, S. BAKLOUTI, S. ROSSIGNO. Effect of the reactivity of alkaline solution and metakaolin on geopolymer formation. Journal of Non-crystalline Solids, v. 410, p. 127–134, 1 fev. 2015.Disponivel em: https://doi.org/10.1016/j.jnoncrysol.2014.12.021.
BARBOSA, V. F. F.; MACKENZIE, K. J. D. Thermal behaviour of inorganic geopolymers and composites derived from sodium polysialate. Materials Research Bulletin, v. 38, n. 2, p. 319-331, 2003.
BURCIAGA-DÍAZ, O.; GÓMEZ-ZAMORANO, L.Y.; ESCALANTE-GARCÍA, J.I. Influence of the long term curing temperature on the hydration of alkaline binders of blast furnace slag-metakaolin. Construction and Building Materials, v. 113, p. 917–926, 1 jun. 2016.
DAVIDOVITS, J. Environmentally Driven Geopolymer Cement Applications. Geopolymer 2002 Conference, 28 out. 2002.
DUXSON, P.; FERNANDEZ-JIMENEZ, A.; PROVIS, J. L.; LUKEY, G. C.; PALOMO, A.; VAN DEVENTER, J. S. J. Geopolymer technology: The current state of the art. Journal of Materials Science, v. 42, n. 9, p. 2917–2933, 2007.
G.Y. ZHANG, Y.H. AHN, R.S. LIN, X.Y. WANG. Effect of waste ceramic powder on properties of alkali-activated blast furnace slag paste and mortar, Polymers. Polymers, v. 13, n. 16, p. 2817, 22 ago. 2021. Disponível em: https://doi.org/10.3390/polym13162817.
GARCÍA-LODEIRO, INES & PALOMO, ANGEL & FERNÁNDEZ-JIMÉNEZ, ANA. An overview of the chemistry of alkali-activated cement-based binders. Handbook of Alkali-Activated Cements, Mortars and Concretes, p. 19–47, 1 jan. 2015.
HAJJAJI, W. A., SLÁVKA & CHIARA, ZANELLI & ALSHAAER, MAZEN & DONDI, MICHELE & LABRINCHA, J.A. & ROCHA, F.. (2013). Composition and technological properties of geopolymers based on metakaolin and red mud. Materials and Design. 52. 648-654. 10.1016/j.matdes.2013.05.058.
C.L. HWANG, M.D. YEHUALAW, D.H. Vo, T.P. HUYN. Development of high-strength alkali-activated pastes containing high volumes of waste brick and ceramic powders, Construction and Building Materials. v. 218, p. 519–529, set. 2019.
JESEMBAYEVA, A., SALEM, T., JIAO, P., HOU, B., & NIYAZBEKOYA, R. Blended Cement Mixed with Basic Oxygen Steelmaking Slag (BOF) as an Alternative Green Building Material. Materials, v. 13, n. 14, p. 3062–3062, 9 jul. 2020.
KAYA, Kardelen; SOYER-UZUN, Sezen. Evolution of structural characteristics and compressive strength in red mud–metakaolin based geopolymer systems. Ceramics International, v. 42, n. 6, p. 7406-7413, 2016.
KOMNITSAS, K.; ZAHARAKI, D. Geopolymerisation: A review and prospects for the minerals industry. Minerals Engineering, v. 20, n. 14, p. 1261-1277, 2007.
LUUKKONEN, T.; HEIKKINEN, J.; KASKELA, A.; LIIRA, H.; HUSGAFVEL, R.; IHALAINEN, M.; LILLINEN, A.; HENRICHSON, C.; KAUKORANTA, P.; NISSINEN, A.; NISSINEN, K. Effect of porosity and pore structure on the performance of geopolymers. Journal of Materials Science, Dordrecht: Springer, v. 54, n. 12, p. 10925–10935, 2019. DOI: 10.1007/s10853-019-03641-3.
MARTINS, J. G.; SILVA, A. P. Da. Produtos Cerâmicos. Série Materiais de Construção. 2ª edição: UFP, 2004.
MEDEIROS, Leonardo Coutinho de. Adição de cascalho de perfuração da Bacia Potiguar em argilas para uso em materiais cerâmicos: influência da concentração e temperatura de queima. 2010. 101 f. Dissertação (Mestrado em Ciência e Engenharia de Materiais) – Universidade Federal do Rio Grande do Norte, Natal, 2010.
MURTA, Frederico Lopes. Produção de argamassas a partir da ativação alcalina de resíduos de cerâmica vermelha e metacaulim. 2015. Dissertação (Mestrado em Engenharia Civil) – Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, 2015. Acesso em: 2 jan. 2025.
MILLER, S. A.; HORVATH, A.; MONTEIRO, P. J. M. Readily Implementable Techniques Can Cut Annual CO2 Emissions from the Production of Concrete by over 20%. Environmental Research Letters, v. 11, n. 7, p. 074029, 2016.
MONTEIRO, P. J. M.; MILLER, S. A.; HORVATH, A. Towards sustainable concrete. Nature Materials, v. 16, n. 7, p. 698–699, 27 jun. 2017.
DE SILVA, P., SAGOE-CRENSTIL, K., SIRIVIVATNANON, V., 2007. Kinetics of geopolymerization: Role of Al2O3 and SiO2. Cement and Concrete Research 37 (4), 512–518.
FLETCHER, R.A., MACKENZIE, K.J.D., NICHOLSON, C.L., SHIMADA, S., 2005. The composition range of aluminosilicate geopolymers. Journal of the European Ceramic Society 25 (9), 1471–1477.
N. MARJANOVIC, M. KOMLJENOVIC, Z. BASCAREVIC, V. NIKOLIC, R. PETROVIC. Physicalmechanical and microstructural properties of alkali-activated fly ash-blast furnace slag blends. Ceramics International, v. 41, n. 1, p. 1421–1435, jan. 2015. Disponível em:http://dx.doi.org/10.1016/j.ceramint.2014.09.075.
NETO, M. L. Q.; MEDEIROS, M. K. S.; FLORÊNCIO, F. D. C.; JÚNIOR, P. L. S. Geração de resíduo sólido proveniente da fabricação de cerâmica vermelha: caso de indústria cerâmica na região de Assú/RN. 2016.
SILVA, P. D.; SAGOE-CRENSTIL, K.; SIRIVIVATNANON, V. Kinetics of geopolymerization: Role of Al2O3 and SiO2. Cement and Concrete Research, v. 37, n. 4, p. 512–518, abr. 2007.
P. Duxson, S.W. Mallicoat, G.C. Lukey, W.M. Kriven, J.S.J. van Deventer, The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 292, n. 1, p. 8–20, jan. 2007. Disponível em: https://doi.org/10.1016/j.colsurfa.2006.05.044
PACHECO-TORGAL, F.; MOURA, D.; DING, Y.; JALALI, S. Composition, strength and workability of alkali-activated metakaolin based mortars. Construction and Building Materials, v. 25, n. 9, p. 3732–3745, set. 2011. https://doi.org/10.1016/j.conbuildmat.2011.04.017.
POUDYAL, L.; ADHIKARI, K. Environmental sustainability in cement industry: An integrated approach for green and economical cement production. Resources, Environment and Sustainability, v. 4, p. 100024, mar. 2021.
PROVIS, J. L.; BERNAL, S. A. Geopolymers and Related Alkali-Activated Materials. Annual Review of Materials Research, v. 44, n. 1, p. 299–327, jul. 2014.
PROVIS, J. L.; VAN DEVENTER, J. S. J. Alkali Activated Materials: State-of-the-Art Report. Dordrecht: Springer, 2015.
SARKAR, MADHUCHHANDA; DANA, KAUSIK. Partial replacement of metakaolin with red ceramic waste in geopolymer. Ceramics International, v. 47, n. 3, p. 3473-3483, 2021. ISSN 0272-8842. Disponível em: https://doi.org/10.1016/j.ceramint.2020.09.191.
SEBRAE – Serviço Brasileiro de Apoio às Micro e Pequenas Empresas – Cerâmica Vermelha – Estudos de Mercado SEBRAE/ESPM – Relatório Completo. Sebrae Nacional, São Paulo, 2008.
SOUZA, P. S. L. Verificação da influência do uso de metacaulim de alta reatividade nas propriedades mecânicas do concreto de alta resistência. Porto Alegre: Escola de Engenharia da UFRGS, p.203 (Tese: Doutorado em Engenharia Civil), 2003.
SOUZA, B. J. L. de. Produção de ligantes geopoliméricos a partir de misturas de resíduos ricos em silicoaluminatos: Resíduo da indústria de cerâmica vermelha, tijolos, telhas e metacaulim. 2020. Dissertação (Mestrado em Engenharia Civil) – Instituto de Tecnologia, Universidade Federal do Pará, Belém, 2020.
TROCHEZ, J.J. et al. Synthesis of geopolymer from spent FCC: Effect of SiO2/Al2O3 and Na2O/SiO2 molar ratios. Materiales de Construcción. Vol. 65, January–March 2015
W. HUO, Z. ZHU, W. CHEN, J. ZHANG, Z. KANG, S. PU, Y. WAN. Effect of synthesis parameters on the development of unconfined compressive strength of recycled waste concrete powder-based geopolymers. Construction and Building Materials. v. 292, p. 123264, 19 jul. 2021. Disponível em: https://doi.org/10.1016/j.conbuildmat.2021.123264.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 João Victor Teles Tavares, Nayra Rocha de Sousa, Antonio Lucas Braga Moreira, Antonio Eduardo Bezerra Cabral, Heloina Nogueira da Costa

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Aviso de Direito Autoral Creative Commons
1. Política para Periódicos de Acesso Livre
Autores que publicam nesta revista concordam com os seguintes termos:
a. Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
b. Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
c. Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto após o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).