EXPLORANDO COMPÓSITOS MADEIRA-POLÍMERO: UMA REVISÃO SISTEMÁTICA VISUAL SOBRE COMPOSIÇÃO, PROCESSOS DE PRODUÇÃO E PROPRIEDADES
SYSTEMATIC REVIEW : WOOD-PLASTIC COMPOSITES AS SUSTAINABLE SOLUTIONS FOR COMPOSITE STRUCTURES
DOI:
https://doi.org/10.29183/2447-3073.MIX2025.v11.n2.139-164Palavras-chave:
Compósitos madeira-polímero, Propriedades físico-mecânicas, Processos de produção, SustentabilidadeResumo
Este artigo revisa os avanços recentes nas pesquisas sobre compósitos de madeira-plástico (CMP). Utilizando a metodologia Systematic Search Flow, foram analisados a composição, estratégias de produção e desempenho físico-mecânico dos CMP. O processo de extrusão, isolado ou combinado com outros métodos, destaca-se nos CMP à base de termoplásticos, permitindo produção contínua e altas taxas de processamento. O polipropileno é frequentemente utilizado como matriz, combinado com cargas fibrosas residuais que aumentam a rigidez e a resistência, mas também elevam a absorção de água. O uso de agentes compatibilizantes pode reduzir essa absorção e melhorar o desempenho mecânico. O método manual de laminação (hand layup) é comum para termofixos, oferecendo maior tempo de manuseio e resultando em estabilidade dimensional e resistência térmica; no entanto, depende fortemente da habilidade do operador, limitando a consistência do processo. A versatilidade dos CMP posiciona-os como uma solução promissora para a construção, ajudando a combater a poluição por resíduos plásticos e o desmatamento. No entanto, mais pesquisas são necessárias para melhorar a durabilidade e desempenho, além de explorar novos materiais e técnicas. Este estudo aborda de forma abrangente esses aspectos, utilizando ferramentas gráficas para ilustrar as complexidades envolvidas e fornecendo análises detalhadas do comportamento físico-mecânico dos CMP.
Referências
OECD. OECD Economic Outlook, Interim Report September 2024: Turning the Corner. Paris: OECD Publishing, 2024.
UNITED NATIONS. Sustainable development goals. Available at: https://www.un.org/sustainabledevelopment/sustainable-development-goals-retired-link/. Accessed: 14 June 2024.
KPMG INTERNATIONAL. Big shifts, small steps: survey of sustainability reporting 2022. Available at: https://assets.kpmg.com/content/dam/kpmg/dk/pdf/dk-2022/dk-SSR-Report_FINAL_web.pdf. Accessed: 14 June 2024.
SABA, N.; JAWAID, M.; ALOTHMAN, O. Y.; PARIDAH, M.; HASSAN, A. Recent advances in epoxy resin, natural fiber-reinforced epoxy composites and their applications. Journal of Reinforced Plastics and Composites, v. 35, p. 447–470, 2016. DOI: https://doi.org/10.1177/0731684415618459.
CABRAL, S. C.; SILVA, A. J.; SOARES, E. B.; ARAÚJO, R. F.; MIRANDA, Y. M. S. Comparative characteristics of plastic wood with conventional wood. Vozes dos Vales Scientific Journal, v. 10, p. 1–20, 2016.
CLEMONS, C. Wood-plastic composites in the United States: the interfacing of two industries. Forest Products Journal, v. 52, p. 10–18, 2002.
DOS SANTOS, F. A.; CANTO, L. B.; SILVA, A. L. N.; VISCONTE, L. L. Y.; PACHECO, E. B. A. V. Processing and properties of plastic lumber. In: EVINGÜR, G. A.; PEKCAN, Ö.; ACHILIAS, D. S. (Eds.). Thermosoftening Plastics. IntechOpen, 2020. DOI: https://doi.org/10.5772/intechopen.82819.
MITAĽOVÁ, Z.; MITAĽ, D.; BERLADIR, K. A concise review of the components and properties of wood–plastic composites. Polymers, v. 16, p. 1556, 2024. DOI: https://doi.org/10.3390/polym16111556.
CARUS, M.; EDER, A.; DAMMER, L.; KORTE, H.; SCHOLZ, L.; ESSEL, R.; BREITMAYER, E.; BARTH, M. Wood-Plastic Composites (WPC) and Natural Fibre Composites (NFC): European and Global Markets 2012 and Future Trends in Automotive and Construction. Hürth: Nova-Institute, 2015. Available at: https://compositesuk.co.uk/wp-content/uploads/2021/12/WPC-NFC-Market-Study-Short-Verson-2015.pdf. Accessed: 15 April 2022.
KIELING, A. C.; SANTANA, G. P.; DOS SANTOS, M. C. Plastic wood composites: general considerations. Scientia Amazonia, v. 8, 2019.
CARDARELLI, F. Encyclopaedia of Scientific Units, Weights, and Measures: Their SI Equivalences and Origins. London; New York: Springer, 2005.
JUBINVILLE, D.; ESMIZADEH, E.; TZOGANAKIS, C.; MEKONNEN, T. Thermo-mechanical recycling of polypropylene for the facile and scalable fabrication of highly loaded wood plastic composites. Composites Part B: Engineering, v. 219, p. 108873, 2021. DOI: https://doi.org/10.1016/j.compositesb.2021.108873.
CHUN, K. S.; SUBRAMANIAM, V.; YENG, C. M.; MENG, P. M.; RATNAM, C. T.; YEOW, T. K.; HOW, C. K. Wood plastic composites made from post-used polystyrene foam and agricultural waste. Journal of Thermoplastic Composite Materials, v. 32, p. 1455–1466, 2019. DOI: https://doi.org/10.1177/0892705718799836.
BASALP, D.; TIHMINLIOGLU, F.; SOFUOGLU, S. C.; INAL, F.; SOFUOGLU, A. Utilization of municipal plastic and wood waste in industrial manufacturing of wood plastic composites. Waste Biomass Valor, v. 11, p. 5419–5430, 2020. DOI: https://doi.org/10.1007/s12649-020-00986-7.
JUBINVILLE, D.; ESMIZADEH, E.; SAIKRISHNAN, S.; TZOGANAKIS, C.; MEKONNEN, T. A comprehensive review of global production and recycling methods of polyolefin (PO) based products and their post-recycling applications. Sustainable Materials and Technologies, v. 25, p. e00188, 2020. DOI: https://doi.org/10.1016/j.susmat.2020.e00188.
ALPÁR, T.; MARKÓ, G.; KOROKNAI, L. Natural fiber reinforced PLA composites: effect of shape of fiber elements on properties of composites. In: THAKUR, V. K.; THAKUR, M. K.; KESSLER, M. R. (Eds.). Handbook of Composites from Renewable Materials. 1st ed. Wiley, 2017, p. 287–312. DOI: https://doi.org/10.1002/9781119441632.ch30.
FRIEDRICH, D. Thermoplastic moulding of wood-polymer composites (WPC): a review on physical and mechanical behaviour under hot-pressing technique. Composite Structures, v. 262, p. 113649, 2021. DOI: https://doi.org/10.1016/j.compstruct.2021.113649.
HEJNA, A.; PRZYBYSZ-ROMATOWSKA, M.; KOSMELA, P.; ZEDLER, Ł.; KOROL, J.; FORMELA, K. Recent advances in compatibilization strategies of wood-polymer composites by isocyanates. Wood Science and Technology, v. 54, p. 1091–1119, 2020. DOI: https://doi.org/10.1007/s00226-020-01203-3.
FRIEDRICH, D. Comparative study on artificial and natural weathering of wood-polymer compounds: a comprehensive literature review. Case Studies in Construction Materials, v. 9, p. e00196, 2018. DOI: https://doi.org/10.1016/j.cscm.2018.e00196.
FERENHOF, H. A.; FERNANDES, R. F. Demystifying the literature review as basis for scientific writing: SSF Method. ACB Journal, v. 21, p. 550–563, 2016. Available at: https://revista.acbsc.org.br/racb/article/view/1194/pdf_1.
WUNI, I. Y.; SHEN, G. Q. P.; OSEI-KYEI, R. Scientometric review of global research trends on green buildings in construction journals from 1992 to 2018. Energy and Buildings, v. 190, p. 69–85, 2019. DOI: https://doi.org/10.1016/j.enbuild.2019.02.010.
HOSSEINI, M. R.; MARTEK, I.; ZAVADSKAS, E. K.; AIBINU, A. A.; ARASHPOUR, M.; CHILESHE, N. Critical evaluation of off-site construction research: A scientometric analysis. Automation in Construction, v. 87, p. 235–247, 2018. DOI: https://doi.org/10.1016/j.autcon.2017.12.002.
GILL, Y. Q.; ABID, U.; IRFAN, M. S.; SAEED, F.; SHAKOOR, A.; FIRDAUS, A. Fabrication, characterization, and machining of polypropylene/wood flour composites. Arabian Journal for Science and Engineering, v. 47, n. 8, p. 5973–5983, 2022. DOI: https://doi.org/10.1007/s13369-021-05768-4.
SHOJAIE, M. H.; HEMMASI, A. H.; TALAEIPOUR, M.; GHASEMI, E. Effect of gamma-ray and melt flow index of polypropylene on the properties of the lignocellulosic composite. Radiation Physics and Chemistry, v. 177, p. 109126, 2020. DOI: https://doi.org/10.1016/j.radphyschem.2020.109126.
BOUHAMED, N.; SOUISSI, S.; MARECHAL, P.; AMAR, M. B.; LENOIR, O.; LEGER, R.; BERGERET, A. Ultrasound evaluation of the mechanical properties as an investigation tool for the wood-polymer composites including olive wood flour. Mechanics of Materials, v. 148, p. 103445, 2020. DOI: https://doi.org/10.1016/j.mechmat.2020.103445.
MAZZANTI, V.; MALAGUTTI, L.; SANTONI, A.; SBARDELLA, F.; CALZOLARI, A.; SARASINI, F.; MOLLICA, F. Correlation between mechanical properties and processing conditions in rubber-toughened wood polymer composites. Polymers, v. 12, n. 5, p. 1170, 2020. DOI: https://doi.org/10.3390/polym12051170.
KALALI, E. N.; ZHANG, L.; SHABESTARI, M. E.; CROYAL, J.; WANG, D.-Y. Flame-retardant wood polymer composites (WPCs) as potential fire safe bio-based materials for building products: Preparation, flammability and mechanical properties. Fire Safety Journal, v. 107, p. 210–216, 2019. DOI: https://doi.org/10.1016/j.firesaf.2017.11.001.
MYSIUKIEWICZ, O.; JABŁOŃSKI, P.; MAJCHROWSKI, R.; ŚLEDZIK, R.; STERZYŃSKI, T. Frictional properties of α-nucleated polypropylene-based composites filled with wood flour. In: GAPIŃSKI, B.; SZOSTAK, M.; IVANOV, V. (Eds.). Advances in Manufacturing II. Cham: Springer, 2019. p. 461–472. DOI: https://doi.org/10.1007/978-3-030-16943-5_39.
VOLFSON, S. I.; FAYZULLIN, I. Z.; MUSIN, I. N.; FAYZULLIN, A. Z.; GRACHEV, A. N.; PUSHKIN, S. A. The physicomechanical and rheological characteristics of wood–polymer composites based on thermally and mechanically modified filler. International Polymer Science and Technology, v. 44, p. 39-43, 2017. DOI: https://doi.org/10.1177/0307174X1704400208.
KRAUSE, K. C.; MÜLLER, M.; MILITZ, H.; KRAUSE, A. Enhanced water resistance of extruded wood–polypropylene composites based on alternative wood sources. European Journal of Wood and Wood Products, v. 75, n. 1, p. 125–134, 2017. DOI: https://doi.org/10.1007/s00107-016-1091-5.
FRACZ, W.; JANOWSKI, G. Predicting effect of fiber orientation on chosen strength properties of wood-polymer composites. Composites Theory and Practice, v. 19, p. 56–63, 2019.
HUANG, R.; ZHANG, X.; ZHOU, C. Mechanical, flammable, and thermal performances of co-extruded wood polymer composites with core–shell structure containing barite-filled shells. Wood Science and Technology, v. 54, n. 5, p. 1299–1318, 2020. DOI: https://doi.org/10.1007/s00226-020-01213-1.
AL-MAQDASI, Z.; GONG, G.; NYSTRÖM, B.; EMAMI, N.; JOFFE, R. Characterization of wood and graphene nanoplatelets (GNPs) reinforced polymer composites. Materials, v. 13, n. 9, p. 2089, 2020. DOI: https://doi.org/10.3390/ma13092089.
JIANG, J.; MEI, C.; PAN, M.; CAO, J. Improved mechanical properties and hydrophobicity on wood flour reinforced composites: Incorporation of silica/montmorillonite nanoparticles in polymers. Polymer Composites, v. 41, n. 4, p. 1090–1099, 2020. DOI: https://doi.org/10.1002/pc.25440.
BARBOS, J. D. V.; AZEVEDO, J. B.; CARDOSO, P. D. S. M.; FILHO, F. D. C. G.; RÍO, T. G. D. Development and characterization of WPCs produced with high amount of wood residue. Journal of Materials Research and Technology, v. 9, n. 5, p. 9684–9690, 2020. DOI: https://doi.org/10.1016/j.jmrt.2020.06.073.
MOHAMED, M. R.; NAGUIB, H. M.; EL-GHAZAWY, R. A.; SHAKER, N. O.; AMER, A. A.; SOLIMAN, A. M.; KANDIL, U. F. Surface activation of wood plastic composites (WPC) for enhanced adhesion with epoxy coating. Materials Performance and Characterization, v. 8, p. 22–40, 2019. DOI: https://doi.org/10.1520/MPC20180034.
HUANG, R.; ZHANG, X.; TENG, Z.; YAO, F. Properties of core-half wrapped shell structure wood-polymer composites containing glass fiber-reinforced shells. BioResources, v. 15, n. 4, p. 9088–9102, 2020. DOI: https://doi.org/10.15376/biores.15.4.9088-9102.
WANG, S.; XUE, P.; JIA, M.; TIAN, J.; ZHANG, R. Effect of polymer blends on the properties of foamed wood-polymer composites. Materials, v. 12, n. 12, p. 1971, 2019. DOI: https://doi.org/10.3390/ma12121971.
MARTIKKA, O.; KÄRKI, T. Promoting recycling of mixed waste polymers in wood-polymer composites using compatibilizers. Recycling, v. 4, n. 1, p. 6, 2019. DOI: https://doi.org/10.3390/recycling4010006.
ABDRAKHMANOVA, L.A.; GALEEV, R.R.; KHANTIMIROV, A.G.; KHOZHIN, V.G. Efficiency of carbon nanostructures in the composition of wood-polymer composites based on polyvinyl chloride. Nanobuild, v. 13, p. 150–157, 2021. DOI: https://doi.org/10.15828/2075-8545-2021-13-3-150-157.
SAMUILOVA, E.O.; PODSHIVALOV, A.V.; FOKINA, M.I.; CHURSINA, V.S.; STRELNIKOVA, I.E.; USPENSKAYA, M.V. Tensile properties of wood plastic composites based on plant-filled polyvinyl chloride/poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) matrices. Agronomy Research, v. 18, 2020. DOI: https://doi.org/10.15159/AR.20.021.
MATSEEVICh, T.; ASKADSKII, A.; KONDRASHCHENKO, V. Modification of WPC Materials by Introduction of Dioctyl Phthalate Plasticator. IOP Conf. Ser.: Mater. Sci. Eng., v. 661, p. 012120, 2019. DOI: https://doi.org/10.1088/1757-899X/661/1/012120.
MATSEEVICh, T.; MATSEEVICh, A.; ASKADSKII, A. Water absorption of wood-polymer composites of savewood. E3S Web Conf., v. 97, p. 02043, 2019. DOI: https://doi.org/10.1051/e3sconf/20199702043.
YEH, S.-K. Polypropylene-Based Wood-Plastic Composites Reinforced With Nanoclay. 2007. Disponível em: https://doi.org/10.33915/etd.4352. Acesso em: 14 jun. 2024.
YADAV, S.M.; LUBIS, M.A.R.; SIHAG, K. A Comprehensive Review on Process and Technological Aspects of Wood-Plastic Composites. JSL, v. 9, p. 329-356, 2021. DOI: https://doi.org/10.23960/jsl29329-356.
PICKERING, K.L.; EFENDY, M.G.A. Preparation and mechanical properties of novel bio-composite made of dynamically sheet formed discontinuous harakeke and hemp fibre mat reinforced PLA composites for structural applications. Industrial Crops and Products, v. 84, p. 139–150, 2016. DOI: https://doi.org/10.1016/j.indcrop.2016.02.005.
EBEWELE, R.O. Polymer Science and Technology. 2. ed. Boca Raton: CRC Press, 2020.
YAMAJI, F.M.; BONDUELLE, A. Use of sawdust in the production of wood-plastic composites. Floresta Journal, v. 34, p. 59-66, 2004. Disponível em: https://revistas.ufpr.br/floresta/article/viewFile/2375/1984.
MANDAL, M.; BORGOHAIN, P.; BEGUM, P.; DEKAA, R.C.; MAJI, T.K. Property enhancement and DFT study of wood polymer composites using rosin derivatives as co-monomers. New Journal of Chemistry, v. 42, p. 2260–2269, 2018. DOI: https://doi.org/10.1039/C7NJ03825A.
ZHANG, H.; CUI, Y.; ZHANG, Z. Chemical treatment of wood fiber and its reinforced unsaturated polyester composites. Vinyl Additive Technology, v. 19, p. 18–24, 2013. DOI: https://doi.org/10.1002/vnl.20321.
ROWELL, R.M. Wood Chemistry and Wood Composites. 1. ed. Boca Raton: CRC Press, 2005.
MANDAL, M.; BARDHAN, P.; MAJI, T.K. Study of UV stability, biodegradability and physical properties of rosin derivative cross-linked wood polymer composites. International Wood Products Journal, v. 11, p. 2–11, 2020. DOI: https://doi.org/10.1080/20426445.2019.1706136.
RATHNAM, V.; KICHU, A.; DUTTA, N.; MAJI, T.K.; DEVI, N. Influence of organically modified nanoclay and TiO2 nanopowder on the properties of Azadirachta indica wood flour-reinforced high-density polyethylene, low-density polyethylene, polypropylene, and polyvinyl chloride nanocomposite. Journal of Thermoplastic Composite Materials, v. 35, p. 1468–1487, 2020. DOI: https://doi.org/10.1177/0892705720935968.
BARTON-PUDLIK, J.; CZAJA, K. Fast-growing willow (Salix viminalis) as a filler in polyethylene composites. Composites Part B: Engineering, v. 143, p. 68–74, 2018. DOI: https://doi.org/10.1016/j.compositesb.2018.01.031.
SOZEN, E.; ZOR, M.; AYDEMIR, D. The Effect of Nano TiO2 and Nano Boron Nitride on Mechanical, Morphological and Thermal Properties of WF/PP Composites. Drvna Ind., v. 69, p. 13–22, 2018. DOI: https://doi.org/10.5552/drind.2018.1724.
WANG, S.; XUE, P.; JIA, M.; CHEN, K. Extrusion foaming behavior of wood plastic composites based on PP/POE blends. Mater. Res. Express, v. 6, p. 115345, 2019. DOI: https://doi.org/10.1088/2053-1591/ab4f0c.
FAYZULLIN, I.Z.; MUSIN, I.N.; VOLFSON, S.I.; NIKIFOROV, A.A. Glass-Filled Wood-Polymer Composites Based on Polypropylene. KEM, v. 816, p. 197–201, 2019. DOI: https://doi.org/10.4028/www.scientific.net/KEM.816.197.
ZHANG, J.; LI, Y.; XING, D.; WANG, Q.; WANG, H.; KOUBAA, A. Reinforcement of continuous fibers for extruded wood-flour/HDPE composites: Effects of fiber type and amount. Construction and Building Materials, v. 228, p. 116718, 2019. DOI: https://doi.org/10.1016/j.conbuildmat.2019.116718
TIAM, S.; LUO, Y.; CHEN, J.; HE, H.; CHEN, Y.; LING, Z. A comprehensive study on the accelerated weathering properties of polypropylene—wood composites with non-metallic materials of waste-printed circuit board powders. Materials, v. 12, n. 6, p. 876, 2019. DOI: https://doi.org/10.3390/ma12060876.
KRAUSE, K.; SAUERBIER, P.; KODDENBERG, T.; KRAUSE, A. Utilization of recycled material sources for wood-polypropylene composites: Effect on internal composite structure, particle characteristics and physico-mechanical properties. Fibers, v. 6, p. 1-18, 2018. DOI: https://doi.org/10.3390/fib6040086.
FAJARDO CABRERA DE LIMA, L. D. P.; CHAMORRO RODRÍGUEZ, C. D.; MINA HERNANDEZ, J. H. Use of organic acids in bamboo fiber-reinforced polypropylene composites: Mechanical properties and interfacial morphology. Polymers, v. 13, n. 12, p. 2007, 2021. DOI: https://doi.org/10.3390/polym13122007.
ZAINI, A. S. S. M.; RUS, A. Z. M.; RAHMAN, N. A.; JAIS, F. H. M.; FAUZAN, M. Z.; SUFIAN, N. A. Mechanical properties evaluation of extruded wood polymer composites. AIP Conference Proceedings, v. 1877, 2017. DOI: https://doi.org/10.1063/1.4999884.
HEJNA, A.; BARCEWSKI, M.; KOSMELA, P.; ANIŚKO, J.; MYSIUKIEWICZ, O.; MARĆ, M. Mandarin peel as an auspicious functional filler for polymer composites. Macedonian Journal of Chemistry and Chemical Engineering, v. 40, n. 1, p. 89-106, 2021. DOI: https://doi.org/10.20450/mjcce.2021.2236.
BOCHKOV, I.; VARKALE, M.; ZICANS, J.; FRANCISZCZAK, P.; BLEDZKI, A. K. Polypropylene composites wear resistance properties due to spelt and oat grain husks short fiber preparation technology. BALTTRIB, v. 1, p. 1–6, 2019.
HEJNA, A.; BARCEWSKI, M.; ANDRZEJEWSKI, J.; KOSMELA, P.; PIASECKI, A.; SZOSTAK, M.; KUANG, T. Rotational molding of linear low-density polyethylene composites filled with wheat bran. Polymers, v. 12, n. 5, p. 1004, 2020. DOI: https://doi.org/10.3390/polym12051004.
BARCEWSKI, M.; MATYKIEWICZ, D.; PIASECKI, A.; SZOSTAK, M. Polyethylene green composites modified with post-agricultural waste filler: thermo-mechanical and damping properties. Composite Interfaces, v. 25, p. 287–299, 2018. DOI: https://doi.org/10.1080/09276440.2018.1399713.
CHEN, B.; CAI, D.; LUO, Z.; CHEN, C.; ZHANG, C.; QIN, P.; CAO, H.; TAN, T. Corncob residual reinforced polyethylene composites considering the biorefinery process and the enhancement of performance. Journal of Cleaner Production, v. 198, p. 452–462, 2018. DOI: https://doi.org/10.1016/j.jclepro.2018.07.080.
WANG, C.; MEI, J.; ZHANG, L. High-added-value biomass-derived composites by chemically coupling post-consumer plastics with agricultural and forestry wastes. Journal of Cleaner Production, v. 284, p. 124768, 2021. DOI: https://doi.org/10.1016/j.jclepro.2020.124768.
ELMUSHYAKHI, A. Parametric characterization of nano-hybrid wood polymer composites using ANOVA and regression analysis. Structures, v. 29, p. 652–662, 2021. DOI: https://doi.org/10.1016/j.istruc.2020.11.069.
GÜMÜŞ, B. E.; YAĞCI, Ö.; ERDOĞAN, D. C.; TAŞDEMIR, M. Dynamical mechanical properties of polypropylene composites filled with olive pit particles. Journal of Testing and Evaluation, v. 47, p. 2551–2561, 2019. DOI: https://doi.org/10.1520/JTE20180198.
HEJNA, A.; BARCEWSKI, M.; KOSMELA, P.; MYSIUKIEWICZ, O.; KUZMIN, A. Coffee silverskin as a multifunctional waste filler for high-density polyethylene green composites. Journal of Composite Science, v. 5, n. 2, p. 44, 2021. DOI: https://doi.org/10.3390/jcs5020044.
HEJNA, A.; KOROL, J.; KOSMELA, P.; KUZMIN, A.; PIASECKI, A.; KULAWIK, A.; CHMIELNICKI, B. By-products from food industry as a promising alternative for the conventional fillers for wood–polymer composites. Polymers, v. 13, n. 6, p. 893, 2021. DOI: https://doi.org/10.3390/polym13060893.
PEERBOOMS, W.; PICKERING, K. L. Use of recycled pulped chromated copper arsenate-treated wood fibre in polymer composites. Journal of Composite Science, v. 2, n. 2, p. 35, 2018. DOI: https://doi.org/10.3390/jcs2020035.
CHAN, C. M.; VANDI, L.-J.; PRATT, S.; HALLEY, P.; RICHARDSON, D.; WERKER, A.; LAYCOCK, B. Mechanical performance and long-term indoor stability of polyhydroxyalkanoate (PHA)-based wood plastic composites (WPCs) modified by non-reactive additives. European Polymer Journal, v. 98, p. 337–346, 2018. DOI: https://doi.org/10.1016/j.eurpolymj.2017.11.041.
JAUNSLAVIE TIS, J.; SHULGA, G.; OZOLINS, J.; NEIBERTE, B.; VEROVKINS, A.; VITOLINA, S.; SHAKELS, V. The influence of mechanical and mechanochemical activation of hardwood wood waste on biocomposite properties. KEM, v. 800, p. 200–204, 2019. DOI: https://doi.org/10.4028/www.scientific.net/KEM.800.200.
JAUNSLAVIEITS, J. et al. Effect of the acidic treatment of domestic wood residue on biocomposite wettability and moisture sorption properties. ETR, v. 1, p. 129, 2017. DOI: https://doi.org/10.17770/etr2017vol1.2538.
JIANG, J. et al. How does Pickering Emulsion Pre-treatment Influence the Properties of Wood Flour and its Composites with High-Density Polyethylene? Polymers, v. 11, p. 1115, 2019. DOI: https://doi.org/10.3390/polym11071115.
MICHALSKA-POZOGA, I.; WEGRZYK, S.; RYDZKOWSKI, T. Assessment of influence of extrusion method on selected properties of wood-polymer composites using Taguchi method of experiment planning. Polimery, v. 62, p. 686–692, 2017. DOI: https://dx.doi.org/10.14314/polimery.2017.686.
LAHTELA, V.; KÄRKI, T. A Study on the Effect of Construction and Demolition Waste (CDW) Plastic Fractions on the Moisture and Resistance to Indentation of Wood-Polymer Composites (WPC). J. Compos. Sci., v. 5, p. 205, 2021. DOI: https://doi.org/10.3390/jcs5080205.
AYDEMIR, D. et al. Accelerated weathering and decay resistance of heat-treated wood reinforced polypropylene composites. Drv. Ind. (Online), v. 70, p. 279–285, 2019. DOI: https://dx.doi.org/10.5552/drvind.2019.1851.
QUITADAMO, A.; MASSARDIER, V.; VALENTE, M. Interactions between PLA, PE and wood flour: effects of compatibilizing agents and ionic liquids. Holzforschung, v. 72, p. 691–700, 2018. DOI: https://doi.org/10.1515/hf-2017-0149.
STADLMANN, A. et al. Interfacial Adhesion and Mechanical Properties of Wood-Polymer Hybrid Composites Prepared by Injection Molding. Polymers, v. 13, p. 2849, 2021. DOI: https://doi.org/10.3390/polym13172849.
SHULGA, G.; NEIBERTE, B. Aminated wood sanding dust as filler for recycled polypropylene-based composite. Cellulose Chem. Technol., v. 53, p. 945–953, 2019. DOI: https://dx.doi.org/10.35812/CelluloseChemTechnol.2019.53.92.
PATEL, V.K.; RAWAT, N. Physico-mechanical properties of sustainable Sagwan-Teak Wood Flour/Polyester Composites with/without gum rosin. Sustainable Materials and Technologies, v. 13, p. 1–8, 2017. DOI: https://dx.doi.org/10.1016/j.susmat.2017.05.002.
KHAN, M.Z.; SRIVASTAVA, S.K.; GUPTA, M. Enhancement of the properties of hybrid woods polymer composites by chemical pre-treatments. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, v. 235, p. 828–841, 2021. DOI: https://doi.org/10.1177/1464420720980033.
KLYOSOV, A.A. Wood-Plastic Composites. New Jersey: John Wiley & Sons, 2007.
WANG, Y. Morphological Characterization of Wood Plastic Composite (WPC) with Advanced Imaging Tools: Developing Methodologies for Reliable Phase and Internal Damage Characterization. 2007. Disponível em: https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/mc87ps55z. Acesso em: 14 jun. 2024.
RAGAERT, K.; DELVA, L.; VAN GEEM, K. Mechanical and chemical recycling of solid plastic waste. Waste Management, v. 69, p. 24–58, 2017. DOI: https://doi.org/10.1016/j.wasman.2017.07.044.
HAO, X. et al. Interfacial adhesion mechanisms of ultra-highly filled wood fiber/polyethylene composites using maleic anhydride grafted polyethylene as a compatibilizer. Materials & Design, v. 212, p. 110182, 2021. DOI: https://doi.org/10.1016/j.matdes.2021.110182.
MANDAL, M.; BARDHAN, P.; MAJI, T.K. Development of wood polymer composites with thermosetting resin from soybean oil cross-linked with rosin derivative. Eur. J. Wood Prod., v. 78, p. 1265–1278, 2020. DOI: https://doi.org/10.1007/s00107-020-01564-3.
GIRDIS, J. et al. Rethinking Timber: Investigation into the Use of Waste Macadamia Nut Shells for Additive Manufacturing. JOM, v. 69, p. 575–579, 2017. DOI: https://doi.org/10.1007/s11837-016-2213-6.
BÜTÜN, F.Y. et al. The effect of fibreboard (MDF) disintegration technique on wood polymer composites (WPC) produced with recovered wood particles. Composites Part A: Applied Science and Manufacturing, v. 118, p. 312–316, 2019. DOI: https://doi.org/10.1016/j.compositesa.2019.01.006.
KALE, A. et al. Lantana Fiber-Filled Polypropylene Composite. In: PANDEY, K. et al. (eds). Wood is Good. Singapore: Springer, 2017. p. 1–480. DOI: https://doi.org/10.1007/978-981-10-3115-1_31.
MAZZANTI, V.; MOLLICA, F. Bending Properties of Wood Flour Filled Polyethylene in Wet Environment. Procedia Engineering, v. 200, p. 68–72, 2017. DOI: https://doi.org/10.1016/j.proeng.2017.07.011.
FORTINI, A.; MAZZANTI, V. Combined effect of water uptake and temperature on wood polymer composites. Journal of Applied Polymer Science, v. 135, 2018. DOI: https://doi.org/10.1002/app.46674.
HEJNA, A.; BARCZEWSKI, M.; KOSMELA, P.; MYSIUKIEWICZ, O.; PIASECKI, A.; TERCJAK, A. Compatibility of Sustainable Mater-Bi/poly(ε-caprolactone)/cellulose Biocomposites as a Function of Filler Modification. Materials, v. 16, 2023. DOI: https://doi.org/10.3390/ma16206814.
LOURENÇON, T.V.; SANTILLI, B.V.; MAGALHÃES, W.L.E.; MUNIZ, G.I.B. Thermal Stabilization of Wood/Polypropylene Composites Through Addition of Unmodified, Low-Cost Kraft Lignin. Waste Biomass Valorization, v. 11, p. 1555–1563, 2020. DOI: https://doi.org/10.1007/s12649-018-0484-6.
ADEBAYO, G.O.; HASSAN, A.; YAHYA, R.; RAHMAN, N.A.; LAFIA-ARAGA, R. Influence of wood surface chemistry on the tensile and flexural properties of heat-treated mangrove/high-density polyethylene composites. Polymer Bulletin, v. 76, p. 6467–6486, 2019. DOI: https://doi.org/10.1007/s00289-019-02731-0.
MAZZANTI, V.; CAVALCOLI, V.; BALBO, A.; MOLLICA, F. Hygrothermal degradation effects on a rubber toughened WPC. Materials Today: Proceedings, v. 31, p. S209–S212, 2020. DOI: https://doi.org/10.1016/j.matpr.2019.11.062.
HARTMANN, R.; KOCH, M. Wood chip plastic composite – a novel bio-based material with high mechanical properties. Polimery, v. 62, p. 556–559, 2017. DOI: https://doi.org/10.14314/polimery.2017.556.
WANG, S.; CHEN, K.; JIA, M.; XUE, P. Effect of processing conditions on the microstructure of microcellular PP/WF composites prepared by the continuous extrusion molding technology. Materials Research Express, v. 7, 2020. DOI: https://doi.org/10.1088/2053-1591/ab5d73.
BÜTÜN, F.Y.; MAYER, A.K.; OSTENDORF, K.; GRÖNE, O.-E.Z.; KRAUSE, K.C.; SCHÖPPER, C.; MERTENS, O.; KRAUSE, A.; MAI, C. Recovering fibres from fibreboards for wood polymer composites production. International Wood Products Journal, v. 9, p. 42–49, 2018. DOI: https://doi.org/10.1080/20426445.2018.1462965.
PRAPRUDDIVONGS, C.; SOMBATSOMPOP, N. Wood, silver-substituted zeolite and triclosan as biodegradation controllers and antibacterial agents for poly(lactic acid) (PLA) and PLA composites. Journal of Thermoplastic Composite Materials, v. 30, p. 583–598, 2017. DOI: https://doi.org/10.1177/0892705715604683.
TUNCEV, D.V.; SATTAROVA, Z.G.; GALIEV, I.M. Multi-Layer Wood-Polymer Composite. Solid State Phenomena, v. 265, p. 47–52, 2017. DOI: https://doi.org/10.4028/www.scientific.net/SSP.265.47.
FRĄCZ, W.; JANOWSKI, G. Determination of viscosity curve and pvt properties for wood-polymer composite. Wood Research, v. 63, p. 321-334, 2018.
RATHOD, Y.; BARI, P.; HANSORA, D.P.; MISHRA, S. Elaboration of performance of tea dust–polypropylene composites. Journal of Applied Polymer Science, v. 134, 2017. DOI: https://doi.org/10.1002/app.44750.
SIWEK, S.; OKTAEE, J.; GRASSELT-GILLE, S.; WAGENFÜHR, A. Influence of different wood flour fractions on the mechanical properties of injection molded WPC with cellulose propionate. European Journal of Wood Production, v. 76, p. 499–507, 2018. DOI: https://doi.org/10.1007/s00107-017-1265-9.
CHAN-HOM, T.; YAMSAENGSUNG, W.; PRAPAGDEE, B.; MARKPIN, T.; SOMBATSOMPOP, N. Flame retardancy, antifungal efficacies, and physical–mechanical properties for wood/polymer composites containing zinc borate. Fire and Materials, v. 41, p. 675–687, 2017. DOI: https://doi.org/10.1002/fam.2408.
LAZRAK, C.; KABOUCHI, B.; HAMMI, M.; FAMIRI, A.; ZIANI, M. Structural study of maritime pine wood and recycled high-density polyethylene (HDPEr) plastic composite using Infrared-ATR spectroscopy, X-ray diffraction, SEM and contact angle measurements. Case Studies in Construction Materials, v. 10, 2019. DOI: https://doi.org/10.1016/j.cscm.2019.e00227.
MANDAL, M.; MAJI, T.K. Comparative study on the properties of wood polymer composites based on different modified soybean oils. Journal of Wood Chemistry and Technology, v. 37, p. 124–135, 2017. DOI: https://doi.org/10.1080/02773813.2016.1253099.
HEJNA, A.; KOSMELA, P. Insights into Compatibilization of Poly(ε-caprolactone)-based Biocomposites with Diisocyanates as Modifiers of Cellulose Fillers. Malayan Journal of Science and Technology, v. 18, p. 221-241, 2020.
MIRSKI, R.; DZIURKA, D.; BANASZAK, A. Using rape particles in the production of polymer and lignocellulose boards. BioResources, v. 14, p. 6736–6746, 2019.
MANDAL, M.; NATH, D.; MAJI, T.K. Wood polymer nanocomposites from functionalized soybean oil and nanoclay. Wood Science and Technology, v. 52, p. 1621–1643, 2018. DOI: https://doi.org/10.1007/s00226-018-1043-9.
HUANG, Y. et al. A branched polyelectrolyte complex enables efficient flame retardant and excellent robustness for wood/polymer composites. Polymers, v. 12, p. 2438, 2020. DOI: https://doi.org/10.3390/polym12112438.
SOZEN, E.; AYDEMIR, D.; ZOR, M. The effects of lignocellulosic fillers on mechanical, morphological and thermal properties of wood polymer composites. Drvna Industrija, v. 68, p. 195–204, 2017. DOI: https://doi.org/10.5552/drind.2017.1709.
CHITRA, K.N. et al. Characterization of wood polymer composite and design of root trainer. In: Proceedings of the International Conference on Emerging Trends in Science, Technology and Management, Karnataka, India, 2018. p. 020126. DOI: http://dx.doi.org/10.1063/1.5029702.
ARUN, A.K. et al. Fabrication and testing of novel hybrid carbon composite for aircraft applications. ACS Journal of Science and Engineering, v. 2, p. 33–40, 2022. DOI: https://doi.org/10.34293/acsjse.v2i1.26.
NAGAMADHU, M.; KUMAR, G.C.M.; JEYARAJ, P. Effect of stacking sequence on mechanical properties of neem wood veneer plastic composites. In: Proceedings of the International Conference on Emerging Trends in Science, Technology and Management, Karnataka, India, 2018. p. 020029. DOI: https://doi.org/10.1063/1.5029605.
JAWAID, M.; THARIQ, M. Sustainable composites for aerospace applications. Woodhead Publishing, 2018.
KHAN, M.Z.R.; SRIVASTAVA, S.K.; GUPTA, M.K. A state-of-the-art review on particulate wood polymer composites: Processing, properties and applications. Polymer Testing, v. 89, p. 106721, 2020. DOI: https://doi.org/10.1016/j.polymertesting.2020.106721.
LIU, T. et al. Selective cleavage of ester linkages of anhydride-cured epoxy using a benign method and reuse of the decomposed polymer in new epoxy preparation. Green Chemistry, v. 19, p. 4364–4372, 2017. DOI: https://doi.org/10.1039/C7GC01737E.
BALAGA, U.K. et al. Characterization and comparison of thin ply IM7/8552 composites processed by automated tape placement and hand layup. Journal of Composite Materials, v. 57, p. 2243–2260, 2023. DOI: https://doi.org/10.1177/00219983231168943.
MOHAMMED, A.S.; MEINCKEN, M. Properties of low-cost WPCs made from alien invasive trees and rLDPE for interior use in social housing. Polymers, v. 13, p. 2436, 2021. DOI: https://doi.org/10.3390/polym13152436.
WANG, S. et al. Research on the preparation and properties of foamed PP/wood flour composites. Materials Research Express, v. 7, p. 035308, 2020. DOI: https://doi.org/10.1088/2053-1591/ab802e.
LUBIS, A.M.H.S. et al. Mechanical properties of oil palm frond wood filled thermoplastic polyurethane. International Journal of Nanoelectronics and Materials, v. 13, p. 255–266, 2020.
SABA, K.; RANA, A.K.; JAYAKRISHNA, K.; RAHMAN, M.M. A review on mechanical and physical properties of natural fiber reinforced polymer composites. Composites Part B: Engineering, v. 106, p. 147–166, 2017. DOI: https://doi.org/10.1016/j.compositesb.2011.01.010
CLEMONS, I. Effects of processing method and moisture history on laboratory fungal resistance of wood-HDPE composites. Forest Products Journal, v. 54, p. 50–57, 2004.
KUMAR, V. et al. Effect of gamma irradiation on tensile and thermal properties of poplar wood flour-linear low density polyethylene composites. Radiation Physics and Chemistry, v. 174, p. 108922, 2020. DOI: https://doi.org/10.1016/j.radphyschem.2020.108922.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Anderson Ravik Santos

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Aviso de Direito Autoral Creative Commons
1. Política para Periódicos de Acesso Livre
Autores que publicam nesta revista concordam com os seguintes termos:
a. Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
b. Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
c. Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto após o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).