VALORES DE REFERÊNCIA PARA METAIS PESADOS EM SOLOS DE UMA BACIA NA ZONA COSTEIRA DO NORDESTE DO BRASIL
REFERENCE VALUES FOR HEAVY METALS IN SOILS OF A BASIN IN THE COASTAL ZONE OF NORTHEAST BRAZIL
DOI:
https://doi.org/10.29183/2447-3073.MIX2024.v10.n5.17-35Palavras-chave:
Geoquímica, poluição do solo, elementos traçosResumo
A presença de metais pesados no solo representa uma ameaça tanto para os ecossistemas quanto para a saúde humana. A fim de avaliar os efeitos das atividades humanas na contaminação do solo, os órgãos responsáveis pelo monitoramento ambiental necessitam de parâmetros de referência para esses contaminantes. Estes parâmetros, conhecidos como Valores de Referência de Qualidade (VRQs), são indicativos das concentrações naturais de metais pesados em solos não afetados por intervenções humanas e devem ser estabelecidos como guias essenciais. Embora já existam estudos de VRQ no Brasil, a variabilidade litológica justifica a necessidade de abordagens mais detalhadas. O objetivo do presente trabalho foi estabelecer os VRQ para Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb e Zn nos solos da bacia do rio Jaboatão, estado de Pernambuco, Brasil. Os resultados permitiram verificar que os metais Cr, Cu e Ni contiveram parte dos dados não detectados. Os valores de VRQ (mg kg-1) foram: 0,43 para Cd, 6,76 para Co, 5,41 para Mn, 21,23 para Pb e 152,17 para Zn. Os valores de Co, Pb e Zn foram superiores aos VRQs de Pernambuco, estabelecidos pela Agência Estadual de Meio Ambiente (CPRH), porém não ultrapassaram os Valores de Prevenção estabelecidos pela legislação nacional.
Referências
Addinsoft, XLSTAT 2019: Data Analysis and Statistical Solution for Microsoft Excel. 2019.
Agência Estadual de Meio Ambiente (CPRH). Relatório de Monitoramento da Qualidade da Água de Bacias Hidrográficas do Estado de Pernambuco em 2019. Recife: CPRH. 2020. 200p. http://www.cprh.pe.gov.br/Controle_Ambiental/monitoramento/qualidade_da_agua/bacias_hidrograficas/relatorio_bacias_hidrograficas/41786%3B63044%3B4803010202%3B0%3B0.asp (acessado em 15 de abril de 2020).
Agência Estadual de Meio Ambiente (CPRH). Resolução Nº 7. Diário Oficial do Estado, Pernambuco, Recife: CPRH. 2014. 4p. https://www.normasbrasil.com.br/norma/instrucao-normativa-7-2014-pe_279789.html (acessado em 14 de abril de 2020).
Agência Pernambucana de Águas e Climas (APAC). Bacias Hidrográficas: grupo de bacias de pequenos rios litorâneos 2 - GL2. https://www.apac.pe.gov.br/bacias-hidrograficas-gl-2/185-bacias-hidrograficas-gl-2/223-gl-2 (acessado em 20 de janeiro de 2024).
Alleoni, L. R. F., Iglesias, C. S. M., Camargo, O. A., Casagrande, J. C., Lavorenti, N. A. Atributos do solo relacionados à adsorção de cádmio e cobre em solos tropicais. Acta Scientiarum Agronomy, 27, 4, 729–737, 2005. https://doi.org/10.4025/actasciagron.v27i4.1348
Alloway, B.J. Heavy metals in soils, primeira ed. Blackie Academic and Professional, John Wiley and Sons, New York. 1990, 218p.
Almeida Júnior, A. B. A., Nascimento, C. W. A., Biondi, C. M., Souza, A. P., Barros, F. M. R.. Background and reference values of metals in soils from Paraíba state, Brazil. Revista Brasileira de Ciência do Solo. 40, 1–13, 2016. https://doi.org/10.1590/18069657rbcs20150122.
Ander, E. L., Johnson, C. C., Cave, M. R., Palumbo-Roe, B., Nathanail, C. P. Lark, R. M. Methodology for the determination of normal background concentrations of contaminants in English soil. Science of The Total Environment. 454–455, 604–618, 2013. https://doi.org/10.1016/j.scitotenv.2013.03.005.
Araújo Filho, J. C., Burgos, N., Lopes, O. F., Silva, F. H. B. B., Medeiros, L. A. R.., Melo Filho, H. F. R., Parahyba, R. B. V., Cavalcanti, A. C., Oliveira Neto, M. B., Silva, F. B. R. E., Leite, A. P., Santos, J. C. P., Sousa Neto, N. C., Silva, A. B., Luz, L. R. Q. P., Lima, P. C., Reis, R. M. G., Barros, A. H. C. Levantamento de reconhecimento de baixa e média intensidade dos solos do Estado de Pernambuco. Embrapa Solos: Boletim de Pesquisa, 11, Rio de Janeiro, 2000. 382p.
Araújo, P. R. M., Biondi, C. M., Silva, F. B. V., Nascimento, C. W. A., Souza-Júnior, V. S. Geochemical soil anomalies: Assessment of risk to human health and implications for environmental monitoring. Journal of Geochemical Exploration. 190, 325–335, 2018. https://doi.org/10.1016/j.gexplo.2018.03.016.
Arias, M., Pérez-Novo, C., Osório, F. C., López-Periago, J. E., Soto, B.. Adsorption and desorption of copper and zinc in the surface layer of acid soils. Colloid and Interface Science, 288, 1, 21–29, 2005. https://doi.org/10.1016/j.jcis.2005.02.053
Benedetti, U. G., Vale Júnior, J. F., Schaefer, C. E. G. R., Melo, V. F., Uchôa, S. C. P. Genesis, chemistry and mineralogy of soils derived from pliopleistocene sediments and from volcanic rocks in Roraima – North Amazonia. Revista Brasileira de Ciências do Solo, 35, 299–312, 2011. http://dx.doi.org/10.1590/S0100-06832011000200002
Biondi, C. M., Nascimento, C. W. A., Fabricio Neta, A. B., Ribeiro, M. R. Teores de Fe, Mn, Zn, Cu, Ni e Co em solos de referência de Pernambuco. Revista Brasileira de Ciência do Solo. 35, 1057–1066, 2011.
Birch, G.F., Vanderhayden, M., Olmos, M. The nature and distribution of metals in soils of the Sydney estuary catchment, Australia. Water Air Soil Pollute. 216, 581–604, 2011. https://doi.org/10.1007/s11270-010-0555-1
Burak, D. L., Fontes, M. P. F., Santos, N. T., Monteiro, L. V. S., Martins, E., Becquer, T. Geochemistry and spatial distribution of heavy metals in oxisols in a mineralized region of the Brazilian Central Plateau. Geoderma. 160, 131–142, 2010. https://doi.org/10.1016/j.geoderma.2010.08.007.
Cembranel, A. S., Sampaio, S. C., Remos, M. B., Gotardo, J. T., Rosa, P. M. D. Geochemical background in an oxisol. Engenharia Agrícola. 37, 3, 565–573, 2017. http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v37n3p565-573/2017.
Chandrasekaran, A., Ravisankar, R., Harikrishnan, N., Satapathy, K. K., Prasad, M. V. R., Kanagasabapathy, K. Multivariate statistical analysis of heavy metal concentration in soils of yelagiri hills, tamilnadu, India–spectroscopical approach. Spectrochemical Acta Part A Molecular and Biomolecular Spectroscopy. 137, 589–600, 2015. https://doi.org/10.1016/j.saa.2014.08.093
Companhia de Tecnologia de Saneamento Ambiental (CETESB). Relatório de Estabelecimento de Valores Orientadores para Solos e Águas Subterrâneas no Estado de São Paulo. 2014. https://cetesb.sp.gov.br/solo/valores-orientadores-para-solo-e-agua-subterranea/ (acessado em 20 de janeiro de 2024).
Companhia de Tecnologia de Saneamento Ambiental (CETESB). Qualidade Dos Solos no Estado de São Paulo Bacias Hidrográficas dos Rios Piracicaba, Capivari e Jundiaí - UGRHI 5. São Paulo: 2015, 130p. https://cetesb.sp.gov.br/solo/wp-content/uploads/sites/18/2013/12/Solo_Web_24-04.pdf (acessado em 30 de julho de 2020).
Conselho Nacional do Meio Ambiente (CONAMA). Resolução Nº 420, Diário Oficial da República Federativa do Brasil. 2009, 18p. https://cetesb.sp.gov.br/aguas-subterraneas/wp-content/uploads/sites/13/2013/11/CONAMA-420-09.pdf (acessado em 08 de dezembro de 2019).
Costa, A. C. S., Almeida, V. C., Lenzi, E., Nozaki, J. Determinação de cobre, alumínio e ferro em solos derivados do basalto através de extrações sequenciais. Química Nova. 25, 4, 2022. https://doi.org/10.1590/S0100-40422002000400007.
Davis, J. C. Statistics and Data Analysis in Geology. 2ª ed. John Wiley and Sons, New York, 1986, 550p.
Dung, T.T.T., Cappuyns, V., Swennen, R., Phung, N. K. From geochemical background determination to pollution assessment of heavy metals in sediments and soils. Reviews in Environmental Science and Bio/Technology. 12, 335–353, 2013. https://doi.org/10.1007/s11157-013-9315-1
Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA). Manual de métodos de análise de solo. 3ª ed. EMBRAPA, Brasília, 2017, 574p.
Eze, P.N., Udeigwe, T., Stietiya, M. H. Distribution and potential source evaluation of heavy metals in prominent soils of Accra Plains, Ghana. Geoderma.156, 357–362, 2010. https://doi.org/10.1016/j.geoderma.2010.02.032
Fabricio Neta, A. B., Nascimento, C.W.A., Biondi, C. M. Natural concentrations and reference values for trace elements in soils of a tropical volcanic archipelago. Environ Geochem Health. 40, 163–173, 2018. https://doi.org/10.1007/s10653-016-9890-5
Fernandes, A. R., Braz, A. M. S., Birani, S. M., Alleoni, L. R. F., Souza, E. S. Quality reference values and background concentrations of potentially toxic elements in soils from the Eastern Amazon, Brazil. Journal of Geochemical Exploration. 190, 453-463, 2018. https://doi.org/10.1016/j.gexplo.2018.04.012.
Ferreira, D.F. Sisvar: a computer statistical analysis system. Ciência Agrotecnológica. 35, 6, 1039-1042, 2011. http://dx.doi.org/10.1590/S1413-70542011000600001
Figueiredo, A. M. G., Enzweiler, J., Sígolo, J. B., Gumiero, F. C., Pavese, A. C., Milian, F. M. Metal contamination in urban park soils of São Paulo. Journal of Radioanalytical and Nuclear Chemistry. 280, 419-425, 2009. https://doi.org/10.1007/s10967-009-0538-0.
Freire, M. B. G. S., Pessoa, L. G. M., Gheyi, H. R. Métodos de Análises Químicas para Solos Afetados por Sais, em: Gheyi, H. R., Dias, N. S., Lacerda, C. F., Gomes Filho, E. Manejo da Salinidade na Agricultura: Estudos Básicos e Aplicados, segunda ed. INCTSal, Fortaleza, 123-148, 2016. https://ppgea.ufc.br/wp-content/uploads/2018/04/manejo-da-salinidade-na-agricultura.pdf (acessado em 20 de janeiro de 2024)
Galuszka, A., Migaszewski, Z. M. Geochemical background – an environmental perspective. Mineralogia. 42, 1, 7–17, 2011. https://doi.org/10.2478/v10002-011-0002-y
Garcia-Mina, J.M. Stability, solubility and maximum metal binding capacity in metal–humic complexes involving humic substances extracted from peat and organic compost. Organic Geochemistry. 37, 1960–1972, 2015. https://doi.org/10.1016/j.orggeochem.2006.07.027
Hernández-Crespo, C., Martín, M. Determination of background levels and pollution assessment for seven metals (Cd, Cu, Ni, Pb, Zn, Fe, Mn) in sediments of a Mediterranean coastal lagoon. Catena. 133, 206-214, 2015. https://doi.org/10.1016/j.catena.2015.05.013.
Kabata-Pendias, A., Pendias, H., 2001. Trace elements in soils and plants, 3ª ed. CRC Press, Boca Raton, Florida, USA, 2001, 331p. http://base.dnsgb.com.ua/files/book/Agriculture/Soil/Trace-Elements-in-Soils-and-Plants.pdf (acessado em 20 de janeiro de 2024).
Kaiser, H. F. The Application of Electronic Computers to Factor Analysis. Educational and Psychological Measurement. 20, 141–151, 1960. https://doi.org/10.1177/001316446002000116
Marques, J.J., Darrell, D. G., Nilton, C., Mertzman, S. A. Trace element geochemistry in Brazilian Cerrado Soils. Geoderma. 121, 31–43, 2004. https://doi.org/10.1016/j.geoderma.2003.10.003.
Matschullat, J., Ottenstein, R., Reimann, C. Geochemical background — can we calculate it? Environmental Geology. 39, 990–1000, 2000. https://doi.org/10.1007/s002549900084.
Mikkonen, H. G., Clarke, B.O., Dasika, R., Wallis, C.J., Reichman, S.M. Assessment of ambient background concentrations of elements in soil using combined survey and open-source data. Science of The Total Environment. 580, 1410-1420, 2017. https://doi.org/10.1016/j.scitotenv.2016.12.106.
Nogueira, T. A. R., Abreu-Junior, C. H., Alleoni, L. R. F., He, Z., Soares, M. R., Santos Vieira, C., Lessa, L. G. F., Capra, G. F. Background concentrations and quality reference values for some potentially toxic elements in soils of São Paulo state, Brazil. Journal of Environmental Management. 221, 10-19, 2018. http://dx.doi.org/10.1016/j.jenvman.2018.05.048.
Oliveira, V. H., Abreu, C. A., Coelho, R. M., Melo, L. C. Cadmium background concentrations to establish reference quality values for soils of São Paulo State. Brazil. Environmental Monitoring and Assessment. 186, 1399–1408, 2014. https://doi.org/10.1007/s10661-013-3462-2.
Oliveira, T. S.; Costa; L. M. Metais pesados em solos de uma topolitossequencia do Triângulo Mineiro. Revista Brasileira de Ciências do Solo, 28, 785–796, 2004. https://doi.org/10.1590/S0100-06832004000400018.
Paye, H.S., Mello, J. W. V., Abrahão, A. P., Fernandes Filho, E. I., Dias, L. C. P., Castro, M. L. O., Melo, S. B., França, M. M. Reference quality values for heavy metals in soils from Espírito Santo State, Brazil. Revista Brasileira de Ciências do Solo. 34, 2041–2051, 2010. https://doi.org/10.1590/S0100-06832010000600028.
Preston, W., Nascimento, C. W. A., Biondi, C. M., Souza Junior, V. S., Silva, W. R., Ferreira, H. A. Valores de referência de qualidade para metais pesados em solos do Rio Grande do Norte. Revista Brasileira de Ciência do Solo. 38, 1028–1037, 2014. https://doi.org/10.1590/S0100-06832014000300035.
Redon, PO., Bur, T., Guiresse, M., Probst, JL., Toiser, A., Revel, JC., Jolivet, C., Probst, A. Modelling trace metal background to evaluate anthropogenic contamination in arable soils of south-western France. Geoderma. 206, 1, 112–122, 2013. https://doi.org/10.1016/j.geoderma.2013.04.023.
Reimann, C., Filzmoser, P., Garrett, R. G. Background and threshold: critical comparison of methods of determination. Science of the Total Environment. 346, 1–16, 2005. https://doi.org/10.1016/j.scitotenv.2004.11.023.
Rothwell, K. A., Cooke, M. P. A comparison of methods used to calculate normal background concentrations of potentially toxic elements for urban soil. Science of The Total Environment. 532, 625–634, 2015. https://doi.org/10.1016/j.scitotenv.2015.06.083.
Santos, S. N., Alleoni, L. R. F. Reference values for heavy metals in soils of the Brazilian agricultural frontier in Southwestern Amazônia. Environmental Monitoring and Assessment. 185, 7, 5737-5748, 2013. https://doi.org/10.1007/s10661-012-2980-7.
Serafim, M. E., Zeviani, W. M., Ono, F. B., Neves, L. G., Silva, B. M., Lal, R. Reference values and soil quality in areas of high soybean yield in Cerrado region, Brazil. Soil and Tillage Research. 195, 1–8, 2019. https://doi.org/10.1016/j.still.2019.104362.
Serviço Geológico do Brasil (CPRM). Geodiversidade do estado de Pernambuco, Recife: CPRM, 2014, 282p. https://rigeo.cprm.gov.br/jspui/handle/doc/16771 (acessado em 18 de junho de 2020).
Sheng, J., Wang, X., Gong, P., Tian, L., Yao, T. Heavy metals of the Tibetan top soils: Level, source, spatial distribution, temporal variation and risk assessment. Environmental Science and Pollution Research. 19, 3362–3370, 2012. https://doi.org/10.1007/s11356-012-0857-5.
Silva, Y. J. A. B., Nascimento, C. W. A., Cantalice, J. R. B., Silva, Y. J. A. B., Cruz, C. M. C. A. Watershed-scale assessment of background concentrations and guidance values for heavy metals in soils from a semiarid and coastal zone of Brazil. Environmental Monitoring and Assessment. 187, 558, 1–10, 2015. https://doi.org/10.1007/s10661-015-4782-1
Tume, P., King, R., González, E., Bustamante, G., Reverter, F., Roca, N., Bech, J. Concentrations of trace elements in school soils in the port city of Talcahuano, Chile. Journal of Geochemical Exploration. 147, 229–236, 2014. https://doi.org/10.1016/j.gexplo.2014.08.014.
United States Environmental Protection Agency (US-EPA), 1996a. Method 3050B: Acid digestion of sediments, sludges, and soils, 2ª revision. DC, Washington, 1996a, 12p. https://www.epa.gov/sites/default/files/2015-06/documents/epa-3050b.pdf (acessado em 20 de janeiro de 2024).
United States Environmental Protection Agency (US-EPA). Soil screening guidance: Technical background document. 2ª ed. DC, Washington, 1996b, 447p. https://archive.epa.gov/region9/superfund/web/pdf/ssg_nonrad_technical-2.pdf (acessado em 20 de Janeiro de 2024).
Yeomans, J. C., Bremner, J. M. A rapid and precise method for routine determination of organic carbon in soil. Communications in Soil Science and Plant Analysis. 19, 13, 1467–1476, 2008. https://doi.org/10.1080/00103628809368027.
Zeng, F., Ali, S., Zhang, H., Ouyang, Y., Qiu, B., Wu, F., Zhang, G. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environmental Pollution. 159, 84–91, 2011. https://doi.org/10.1016/j.envpol.2010.09.019.
Zuliani, D. Q., Abreu, L. B., Curi, N., Carvalho, G. S., Costa, A. M., Marques, J. J. Elementos traços em águas, sedimentos e solos da bacia do rio das Mortes, Minas Gerais. Holos. 4, 308–326, 2017. https://doi.org/10.15628/holos.2017.5451
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Marcus Metri Correa, Gilderlaine Souza de Lima, Douglas Monteiro Cavalcante, Fernando Cartaxo Rolim Neto, Rebeca Carolina de Albuquerque Oliveira Lancha
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Aviso de Direito Autoral Creative Commons
1. Política para Periódicos de Acesso Livre
Autores que publicam nesta revista concordam com os seguintes termos:
a. Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
b. Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
c. Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto após o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).