JARDINS DE CHUVA: ATUALIZAÇÕES SOBRE A TÉCNICA A PARTIR DE UMA REVISÃO SISTEMÁTICA
RAIN GARDENS: TECHNIQUE UPDATES BASED ON A SYSTEMATIC REVIEW
DOI:
https://doi.org/10.29183/2447-3073.MIX2023.v9.n5.201-215Palavras-chave:
Jardim de chuva; Infraestrutura verde; soluções baseadas na natureza; poluição difusaResumo
O processo de urbanização acarreta degradação das águas urbanas, pelo aumento da poluição difusa carreada para os córregos. Técnicas de infraestrutura verde têm sido utilizadas como uma alternativa de cidades para o controle da poluição dos rios e adaptação as mudanças climáticas. O Jardim de Chuva se destaca por reduzir do escoamento superficial, e atuar filtrando a poluição difusa. Apesar de utilizadas há mais de 30 anos nos EUA, no Brasil ainda é pouco conhecida. O presente trabalho tem o objetivo de apresentaras pesquisas recentes sobre jardins de chuva, e estimular a disseminação dessa prática no Brasil. Para isso, foi realizada uma revisão sistemática sobre o tema. A pesquisa resultou em 69 artigos, de 11 diferentes paísesnos temas: (1) Custos de instalação e operação; (2) Capacidade de retenção de água; (3) Controle de poluição; (4) Aspectos construtivos e operacionais e (5) Fatores socioambientais. As publicações mais atuais se preocupam mais com os custos da manutenção das estruturas, além de métodos de avaliação sobre a eficiência dos mesmos. Existe no Brasil a necessidade de maior quantidade de estudos sobre o tema, de forma a aprimorar o conhecimento e aumentar a divulgação da técnica.
Referências
AHIABLAME, L., & SHAKYA, R. (2016). Modeling flood reduction effects of low impact development at a watershed scale. Journal of Environmental Management, 171, 81–91. https://doi.org/10.1016/j.jenvman.2016.01.036
ANDERSON, M. J., KURTYCZ, D. F. I., & CLINE, J. R. (2015). Baptisia poisoning: A new and toxic look-alike in the neighborhood. Journal of Emergency Medicine, 48(1), 39–42. https://doi.org/10.1016/j.jemermed.2014.09.037
AUTIXIER, L., MAILHOT, A., BOLDUC, S., MADOUX-HUMERY, A. S., GALARNEAU, M., PRÉVOST, M., & DORNER, S. (2014). Evaluating rain gardens as a method to reduce the impact of sewer overflows in sources of drinking water. Science of the Total Environment, 499, 238–247. https://doi.org/10.1016/j.scitotenv.2014.08.030
BADURA, T., KRKOŠKA LORENCOVÁ, E., FERRINI, S., & VAČKÁŘOVÁ, D. (2021). Public support for urban climate adaptation policy through nature-based solutions in Prague. Landscape and Urban Planning, 215, 15. https://doi.org/10.1016/j.landurbplan.2021.104215
BORTOLINI, L., & ZANIN, G. (2018). Hydrological behaviour of rain gardens and plant suitability: A study in the Veneto plain (north-eastern Italy) conditions. Urban Forestry and Urban Greening, 34(August 2017), 121–133. https://doi.org/10.1016/j.ufug.2018.06.007
BROWN, R. A., & HUNT, W. F. (2011). Impacts of Media Depth on Effluent Water Quality and Hydrologic Performance of Undersized Bioretention Cells. Journal of Irrigation and Drainage Engineering, 137(3), 132–143. https://doi.org/10.1061/(asce)ir.1943-4774.0000167
BUZZARD, V., GIL-LOAIZA, J., GRAF GRACHET, N., TALKINGTON, H., YOUNGERMAN, C., TFAILY, M. M., & MEREDITH, L. K. (2021). Green infrastructure influences soil health: Biological divergence one year after installation. Science of the Total Environment, 801. https://doi.org/10.1016/j.scitotenv.2021.149644
CARSTENS, D., & AMER, R. (2019). Spatio-temporal analysis of urban changes and surface water quality. Journal of Hydrology, 569(August 2018), 720–734. https://doi.org/10.1016/j.jhydrol.2018.12.033
CHAFFIN, B. C., SHUSTER, W. D., GARMESTANI, A. S., FURIO, B., ALBRO, S. L., GARDINER, M., SPRING, M. L., & GREEN, O. O. (2016). A tale of two rain gardens: Barriers and bridges to adaptive management of urban stormwater in Cleveland, Ohio. Journal of Environmental Management, 183, 431–441. https://doi.org/10.1016/j.jenvman.2016.06.025
CHAN, F. K. S., GRIFFITHS, J. A., HIGGITT, D., XU, S., ZHU, F., TANG, Y. T., XU, Y., & THORNE, C. R. (2018). “Sponge City” in China—A breakthrough of planning and flood risk management in the urban context. Land Use Policy, 76(March), 772–778. https://doi.org/10.1016/j.landusepol.2018.03.005
CHANDRASENA, G. I., DELETIC, A., & MCCARTHY, D. T. (2016). Biofiltration for stormwater harvesting: Comparison of Campylobacter spp. and Escherichia coli removal under normal and challenging operational conditions. Journal of Hydrology, 537, 248–259. https://doi.org/10.1016/j.jhydrol.2016.03.044
CHURCH, S. P. (2015). Exploring Green Streets and rain gardens as instances of small scale nature and environmental learning tools. Landscape and Urban Planning, 134, 229–240. https://doi.org/10.1016/j.landurbplan.2014.10.021
COLEMAN, S., HURLEY, S., RIZZO, D., KOLIBA, C., & ZIA, A. (2018). From the household to watershed: A cross-scale analysis of residential intention to adopt green stormwater infrastructure. Landscape and Urban Planning, 180(September), 195–206. https://doi.org/10.1016/j.landurbplan.2018.09.005
CUI, L., RUPPRECHT, C. D. D., & SHIBATA, S. (2021). Climate-responsive green-space design inspired by traditional gardens: Microclimate and human thermal comfort of Japanese gardens. Sustainability (Switzerland), 13(5), 1–23. https://doi.org/10.3390/su13052736
DALL’ARA, E., MAINO, E., GATTA, G., TORREGGIANI, D., & TASSINARI, P. (2019). Green Mobility Infrastructures. A landscape approach for roundabouts’ gardens applied to an Italian case study. Urban Forestry and Urban Greening, 37(July 2017), 109–125. https://doi.org/10.1016/j.ufug.2018.03.011
DER. (1999). Low-Impact Development Design Strategies An Integrated Design Approach Low-Impact Development : An Integrated Design Approach (Número June). Department of Environment Resource.
DER - Department of Environmental Resources. (2007). Bioretention Manual, Prince George’s County, Maryland. In Environmental Services Division Department of Environmental Resources.
DIETZ, M. E., & CLAUSEN, J. C. (2006). Saturation to improve pollutant retention in a rain garden. Environmental Science and Technology, 40(4), 1335–1340. https://doi.org/10.1021/es051644f
DING, L., REN, X., GU, R., & CHE, Y. (2019). Implementation of the “sponge city” development plan in China: An evaluation of public willingness to pay for the life-cycle maintenance of its facilities. Cities, 93(500), 13–30. https://doi.org/10.1016/j.cities.2019.04.007
EBRAHIMIAN, A., WADZUK, B., & TRAVER, R. (2019). Evapotranspiration in green stormwater infrastructure systems. Science of the Total Environment, 688, 797–810. https://doi.org/10.1016/j.scitotenv.2019.06.256
FAJARDO-HERRERA, R. J., VALDELAMAR-VILLEGAS, J. C., & MOUTHON BELLO, J. (2019). A Rain Garden for Nitrogen Removal from Storm Runoff in Tropical Cities. Revista de Ciencias Ambientales, 53(2), 132–146. https://www.revistas.una.ac.cr/index.php/ambientales/article/view/12097
FLYNN, K. M., & TRAVER, R. G. (2013). Green infrastructure life cycle assessment: A bio-infiltration case study. Ecological Engineering, 55, 9–22. https://doi.org/10.1016/j.ecoleng.2013.01.004
FOWDAR, H., PAYNE, E., DELETIC, A., ZHANG, K., & MCCARTHY, D. (2022). Advancing the Sponge City Agenda: Evaluation of 22 plant species across a broad range of life forms for stormwater management. Ecological Engineering, 175(December 2021), 11. https://doi.org/10.1016/j.ecoleng.2021.106501
GAO, J., LI, J., LI, Y., XIA, J., & LV, P. (2021). A Distribution Optimization Method of Typical LID Facilities for Sponge City Construction. Ecohydrology and Hydrobiology, 21(1), 13–22. https://doi.org/10.1016/j.ecohyd.2020.09.003
GÉHÉNIAU, N., FUAMBA, M., I, MAHAUT, V., GENDRON, M. R., & DUGUÉ, M. (2015). Monitoring of a Rain Garden in Cold Climate: Case Study of a Parking Lot near Montréal. Journal of Irrigation and Drainage Engineering, 141(6), 04014073. https://doi.org/10.1061/(asce)ir.1943-4774.0000836
GU, C., COCKERILL, K., ANDERSON, W. P., SHEPHERD, F., GROOTHUIS, P. A., MOHR, T. M., WHITEHEAD, J. C., RUSSO, A. A., & ZHANG, C. (2019). Modeling effects of low impact development on road salt transport at watershed scale. Journal of Hydrology, 574(April), 1164–1175. https://doi.org/10.1016/j.jhydrol.2019.04.079
GUO, C., LI, J., LI, H., & LI, Y. (2019). Influences of stormwater concentration infiltration on soil nitrogen, phosphorus, TOC and their relations with enzyme activity in rain garden. Chemosphere, 233, 207–215. https://doi.org/10.1016/j.chemosphere.2019.05.236
GUO, C., LI, J., LI, H., ZHANG, B., MA, M., & LI, F. (2018). Seven-year running effect evaluation and fate analysis of rain gardens in Xi’an, Northwest China. Water (Switzerland), 10(7). https://doi.org/10.3390/w10070944
GUO, J. C. Y., & LUU, T. M. (2015). Operation of Cap Orifice in a Rain Garden. Journal of Hydrologic Engineering, 20(10), 06015002. https://doi.org/10.1061/(asce)he.1943-5584.0001184
HAN, R., LI, J., LI, Y., XIA, J., & GAO, X. (2021). Comprehensive benefits of different application scales of sponge facilities in urban built areas of northwest China. Ecohydrology and Hydrobiology, 21(3), 516–528. https://doi.org/10.1016/j.ecohyd.2021.08.008
HEIDARI, B., SCHMIDT, A. R., & MINSKER, B. (2022). Cost/benefit assessment of green infrastructure: Spatial scale effects on uncertainty and sensitivity. Journal of Environmental Management, 302(PA), 114009. https://doi.org/10.1016/j.jenvman.2021.114009
HONG, J., GERONIMO, F. K., CHOI, H., & KIM, L. H. (2018). Impacts of nonpoint source pollutants on microbial community in rain gardens. Chemosphere, 209, 20–27. https://doi.org/10.1016/j.chemosphere.2018.06.062
HOOVER, F. A., PRICE, J. I., & HOPTON, M. E. (2020). Examining the effects of green infrastructure on residential sales prices in Omaha, Nebraska. Urban Forestry and Urban Greening, 54(October 2019), 126778. https://doi.org/10.1016/j.ufug.2020.126778
HUA, P., YANG, W., QI, X., JIANG, S., XIE, J., GU, X., LI, H., ZHANG, J., & KREBS, P. (2020). Evaluating the effect of urban flooding reduction strategies in response to design rainfall and low impact development. Journal of Cleaner Production, 242, 118515. https://doi.org/10.1016/j.jclepro.2019.118515
JIA, Z., TANG, S., LUO, W., LI, S., & ZHOU, M. (2016). Small scale green infrastructure design to meet different urban hydrological criteria. Journal of Environmental Management, 171, 92–100. https://doi.org/10.1016/j.jenvman.2016.01.016
JOHNSTON, M. R., BALSTER, N. J., & THOMPSON, A. M. (2020). Vegetation alters soil water drainage and retention of replicate rain gardens. Water (Switzerland), 12(11), 1–23. https://doi.org/10.3390/w12113151
KARCZMARCZYK, A., & KAMINSKA, M. (2020). Phosphorus leaching from substrates commonly used in rain gardens. E3S Web of Conferences, 171, 1–5. https://doi.org/10.1051/e3sconf/202017101003
KAYKHOSRAVI, S., KHAN, U. T., & JADIDI, M. A. (2022). A simplified geospatial model to rank LID solutions for urban runoff management. Science of the Total Environment, 831(March), 14. https://doi.org/10.1016/j.scitotenv.2022.154937
KHAN, U. T., VALEO, C., CHU, A., & VAN DUIN, B. (2012a). Bioretention cell efficacy in cold climates: Part 1 - hydrologic performance. Canadian Journal of Civil Engineering, 39(11), 1210–1221. https://doi.org/10.1139/l2012-110
KHAN, U. T., VALEO, C., CHU, A., & VAN DUIN, B. (2012b). Bioretention cell efficacy in cold climates: Part 2 - water quality performance. Canadian Journal of Civil Engineering, 39(11), 1222–1233. https://doi.org/10.1139/l2012-111
LAW, E. P., DIEMONT, S. A. W., & TOLAND, T. R. (2017). A sustainability comparison of green infrastructure interventions using emergy evaluation. Journal of Cleaner Production, 145, 374–385. https://doi.org/10.1016/j.jclepro.2016.12.039
LI, F., CHEN, J., ENGEL, B. A., LIU, Y., WANG, S., & SUN, H. (2021). Assessing the effectiveness and cost efficiency of green infrastructure practices on surface runoff reduction at an urban watershed in China. Water (Switzerland), 13(1). https://doi.org/10.3390/w13010024
LIM, H. S., & LU, X. X. (2016). Sustainable urban stormwater management in the tropics: An evaluation of Singapore’s ABC Waters Program. Journal of Hydrology, 538, 842–862. https://doi.org/10.1016/j.jhydrol.2016.04.063
LIU, K., LI, J., XIA, J., GAO, X., GAO, J., & JIANG, C. (2022). Study on LID Facilities Comprehensive Effect Evaluation : A case in Campus. Ecohydrology & Hydrobiology, xxxx. https://doi.org/10.1016/j.ecohyd.2022.04.001
MA, Y., NALL, J., & O’BANNON, D. (2018). Assessment of Orifice-Controlled Flow Monitoring Device for Rain Garden Performance. Journal of Sustainable Water in the Built Environment, 4(2), 05018002. https://doi.org/10.1061/jswbay.0000855
Management Environmental Services Sustainable - MESS. (2005). NE Siskiyou Green Street Project. https://www.portlandoregon.gov/bes/article/78299
MANIQUIZ-REDILLAS, M. C., & KIM, L. H. (2016). Evaluation of the capability of low-impact development practices for the removal of heavy metal from urban stormwater runoff. Environmental Technology (United Kingdom), 37(18), 2265–2272. https://doi.org/10.1080/09593330.2016.1147610
MEHRING, A. S., HATT, B. E., KRAIKITTIKUN, D., ORELO, B. D., RIPPY, M. A., GRANT, S. B., GONZALEZ, J. P., JIANG, S. C., AMBROSE, R. F., & LEVIN, L. A. (2016). Soil invertebrates in Australian rain gardens and their potential roles in storage and processing of nitrogen. Ecological Engineering, 97, 138–143. https://doi.org/10.1016/j.ecoleng.2016.09.005
MELO, TA, COUTINHO, A, CABRAL, J. J., ANTÔNIO C. D. ANTONINO, & CIRILO, J. A. (2014). Jardim de chuva: sistema de biorretenção para o manejo das água pluviais urbanas. Ambiente Construído, 14(4), 147–165.
MENG, T., & HSU, D. (2019). Stated preferences for smart green infrastructure in stormwater management. Landscape and Urban Planning, 187(March), 1–10. https://doi.org/10.1016/j.landurbplan.2019.03.002
MORASH, J., WRIGHT, A., LEBLEU, C., MEDER, A., KESSLER, R., BRANTLEY, E., & HOWE, J. (2019). Increasing sustainability of residential areas using rain gardens to improve pollutant capture, biodiversity and ecosystem resilience. Sustainability (Switzerland), 11(12). https://doi.org/10.3390/SU11123269
NICHOLS, W., WELKER, A., TRAVER, R., & TU, M. “PETER”. (2021). Modeling Seasonal Performance of Operational Urban Rain Garden Using HYDRUS-1D. Journal of Sustainable Water in the Built Environment, 7(3), 04021005. https://doi.org/10.1061/jswbay.0000941
OBWB. (2021). Slow it. Spread it. Sink it! (Second Edi). Okanaguan Basin Water Board. www.okwaterwise.ca
PAULIN, M., REMME, R. P., & DE NIJS, T. (2019). Amsterdam’s Green Infrastructure: Valuing Nature’s Contributions to People. RIVM Letter report 2019-0021, 79.
PENNINO, M. J., MCDONALD, R. I., & JAFFE, P. R. (2016). Watershed-scale impacts of stormwater green infrastructure on hydrology, nutrient fluxes, and combined sewer overflows in the mid-Atlantic region. Science of the Total Environment, 565, 1044–1053. https://doi.org/10.1016/j.scitotenv.2016.05.101
PERALES-MOMPARLER, S., ANDRÉS-DOMÉNECH, I., HERNÁNDEZ-CRESPO, C., VALLÉS-MORÁN, F., MARTÍN, M., ESCUDER-BUENO, I., & ANDREU, J. (2017). The role of monitoring sustainable drainage systems for promoting transition towards regenerative urban built environments: a case study in the Valencian region, Spain. Journal of Cleaner Production, 163, 113–124. https://doi.org/10.1016/j.jclepro.2016.05.153
QIN, Y. (2020). Urban flooding mitigation techniques: A systematic review and future studies. Water (Switzerland), 12(12). https://doi.org/10.3390/w12123579
RAINEY, W., MCHALE, M., & ARABI, M. (2022). Characterization of co-benefits of Green stormwater infrastructure across ecohydrologic regions in the United States. Urban Forestry & Urban Greening, 70(February), 127514. https://doi.org/10.1016/j.ufug.2022.127514
REIS, R., & ILHA, M. (2014). Comparação de desempenho hidrológico de sistemas de infiltração de água de chuva: poço de infiltração e jardim de chuva. Ambiente Construído, 14(2), 79–90.
ROSENBERGER, L., LEANDRO, J., PAULEIT, S., & ERLWEIN, S. (2021). Sustainable stormwater management under the impact of climate change and urban densification. Journal of Hydrology, 596, 11. https://doi.org/10.1016/J.JHYDROL.2021.126137
ROY, A. H., RHEA, L. K., MAYER, A. L., SHUSTER, W. D., BEAULIEU, J. J., HOPTON, M. E., MORRISON, M. A., & ST AMAND, A. (2014). How much is enough? Minimal responses of water quality and stream biota to partial retrofit stormwater management in a suburban neighborhood. PLoS ONE, 9(1), 1–14. https://doi.org/10.1371/journal.pone.0085011
SHAFIQUE, M., KIM, R., & RAFIQ, M. (2018). Green roof benefits, opportunities and challenges – A review. Renewable and Sustainable Energy Reviews, 90(March), 757–773. https://doi.org/10.1016/j.rser.2018.04.006
SHIN, D. W., & MCCANN, L. (2018). Enhancing Adoption Studies: The Case of Residential Stormwater Management Practices in the Midwest. Agricultural and Resource Economics Review, 47(1), 32–65. https://doi.org/10.1017/age.2017.3
SILVA, G. N. DA;, ALVES, L. D., SANTOS, I. E. DOS;, BILA, D. M., JÚNIOR, A. A. O., & CORRÊA, S. M. (2020). An assessment of atmospheric deposition of metals and the physico - chemical parameters of a rainwater harvesting system in Rio de Janeiro Brazil, by means of statistical multivariate analysis. Revista Ambiente e Agua, 15(4). https://doi.org/10.4136
SIWIEC, E., ERLANDSEN, A. M., & VENNEMO, H. (2018). City Greening by Rain Gardens - Costs and Benefits. Ochrona Srodowiska i Zasobow Naturalnych, 29(1), 1–5. https://doi.org/10.2478/oszn-2018-0001
SØBERG, L. C., VIKLANDER, M., & BLECKEN, G. T. (2017). Do salt and low temperature impair metal treatment in stormwater bioretention cells with or without a submerged zone? Science of the Total Environment, 579, 1588–1599. https://doi.org/10.1016/j.scitotenv.2016.11.179
SONG, C. (2022). Application of nature-based measures in China’s sponge city initiative: Current trends and perspectives. Nature-Based Solutions, 2(December 2021), 100010. https://doi.org/10.1016/j.nbsj.2022.100010
STOBBELAAR, D. J., VAN DER KNAAP, W., & SPIJKER, J. (2022). Transformation towards Green Cities: Key Conditions to Accelerate Change. Sustainability (Switzerland), 14(11), 1–16. https://doi.org/10.3390/su14116410
TARGA, M. DOS S., BATISTA, G. T., DINIZ, H. N., DIAS, N. W., & MATOS, F. C. DE. (2012). Urbanização e escoamento superficial na bacia hidrográfica do Igarapé Tucunduba, Belém, PA, Brasil. Revista Ambiente e Agua, 7(2), 120–142. https://doi.org/10.4136/1980-993X
TIRPAK, R. A., AFROOZ, A. N., WINSTON, R. J., VALENCA, R., SCHIFF, K., & MOHANTY, S. K. (2021). Conventional and amended bioretention soil media for targeted pollutant treatment: A critical review to guide the state of the practice. Water Research, 189, 17. https://doi.org/10.1016/j.watres.2020.116648
UACDC. (2010). LID - Low Impact Development: a design manual for urban areas. In University of Arkansas Press (Vol. 1). University of Arkansas Press. https://doi.org/10.4324/9780429281235-2
URETA, J., MOTALLEBI, M., SCARONI, A. E., LOVELACE, S., & URETA, J. C. (2021). Understanding the public’s behavior in adopting green stormwater infrastructure. Sustainable Cities and Society, 69(March), 102815. https://doi.org/10.1016/j.scs.2021.102815
VALINSKI, N. A., & CHANDLER, D. G. (2015). Infiltration performance of engineered surfaces commonly used for distributed stormwater management. Journal of Environmental Management, 160, 297–305. https://doi.org/10.1016/j.jenvman.2015.06.032
WANG, H., SUN, Y., ZHANG, L., WANG, W., & GUAN, Y. (2021). Enhanced nitrogen removal and mitigation of nitrous oxide emission potential in a lab-scale rain garden with internal water storage. Journal of Water Process Engineering, 42, 9. https://doi.org/10.1016/j.jwpe.2021.102147
WANG, J., CHUA, L. H. C., & SHANAHAN, P. (2019). Hydrological modeling and field validation of a bioretention basin. Journal of Environmental Management, 240(November 2018), 149–159. https://doi.org/10.1016/j.jenvman.2019.03.090
WANG, R., ZHANG, X., & LI, M. H. (2019). Predicting bioretention pollutant removal efficiency with design features: A data-driven approach. Journal of Environmental Management, 242(April), 403–414. https://doi.org/10.1016/j.jenvman.2019.04.064
WILFONG, M. T., CASEY, R. E., & OWNBY, D. R. (2021). Performance of commercially available soil amendments for enhanced Cu attenuation in bioretention media. Journal of Environmental Management, 295, 9. https://doi.org/10.1016/j.jenvman.2021.113047
WILKERSON, B., ROMANENKO, E., & BARTON, D. N. (2022). Modeling reverse auction-based subsidies and stormwater fee policies for Low Impact Development (LID) adoption: a system dynamics analysis. Sustainable Cities and Society, 79(December 2021), 18. https://doi.org/10.1016/j.scs.2021.103602
XU, C., TANG, T., JIA, H., XU, M., XU, T., LIU, Z., LONG, Y., & ZHANG, R. (2019). Benefits of coupled green and grey infrastructure systems: Evidence based on analytic hierarchy process and life cycle costing. Resources, Conservation and Recycling, 151(April), 1–10. https://doi.org/10.1016/j.resconrec.2019.104478
YUAN, J., & DUNNETT, N. (2018). Plant selection for rain gardens: Response to simulated cyclical flooding of 15 perennial species. Urban Forestry and Urban Greening, 35(January), 57–65. https://doi.org/10.1016/j.ufug.2018.08.005
YUE, C., LI, L. Y., & JOHNSTON, C. (2018). Exploratory study on modification of sludge-based activated carbon for nutrient removal from stormwater runoff. Journal of Environmental Management, 226(July), 37–45. https://doi.org/10.1016/j.jenvman.2018.07.089
ZHANG, K., DELETIC, A., PAGE, D., & MCCARTHY, D. T. (2015). Surrogates for herbicide removal in stormwater biofilters. Water Research, 81, 64–71. https://doi.org/10.1016/j.watres.2015.05.043
ZHANG, Z., LI, J., JIANG, C., LI, Y., & ZHANG, J. (2022). Impact of nutrient removal on microbial community in bioretention facilities with different underlying types/built times at field scale. Ecological Engineering, 176(June 2021), 106542. https://doi.org/10.1016/j.ecoleng.2022.106542
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Fabio Gondim, Alfredo Akira Ohnuma Jr., Marcelo Obraczka
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Aviso de Direito Autoral Creative Commons
1. Política para Periódicos de Acesso Livre
Autores que publicam nesta revista concordam com os seguintes termos:
a. Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
b. Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
c. Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto após o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).