JARDINS DE CHUVA: ATUALIZAÇÕES SOBRE A TÉCNICA A PARTIR DE UMA REVISÃO SISTEMÁTICA

RAIN GARDENS: TECHNIQUE UPDATES BASED ON A SYSTEMATIC REVIEW

Autores

DOI:

https://doi.org/10.29183/2447-3073.MIX2023.v9.n5.201-215

Palavras-chave:

Jardim de chuva; Infraestrutura verde; soluções baseadas na natureza; poluição difusa

Resumo

O processo de urbanização acarreta degradação das águas urbanas, pelo aumento da poluição difusa carreada para os córregos. Técnicas de infraestrutura verde têm sido utilizadas como uma alternativa de cidades para o controle da poluição dos rios e adaptação as mudanças climáticas. O Jardim de Chuva se destaca por reduzir do escoamento superficial, e atuar filtrando a poluição difusa. Apesar de utilizadas há mais de 30 anos nos EUA, no Brasil ainda é pouco conhecida. O presente trabalho tem o objetivo de apresentaras pesquisas recentes sobre jardins de chuva, e estimular a disseminação dessa prática no Brasil. Para isso, foi realizada uma revisão sistemática sobre o tema. A pesquisa resultou em 69 artigos, de 11 diferentes paísesnos temas: (1) Custos de instalação e operação; (2) Capacidade de retenção de água; (3) Controle de poluição; (4) Aspectos construtivos e operacionais e (5) Fatores socioambientais. As publicações mais atuais se preocupam mais com os custos da manutenção das estruturas, além de métodos de avaliação sobre a eficiência dos mesmos. Existe no Brasil a necessidade de maior quantidade de estudos sobre o tema, de forma a aprimorar o conhecimento e aumentar a divulgação da técnica.

Biografia do Autor

Fabio Gondim, INEMA - Instituto de Meio Ambiente e Recursos Hídricos da Bahia

Especialista em Meio Ambiente e Recursos Hídricos. Doutorando em Engenharia Ambiental (Departamento de Engenharia)

ORCID:

https://orcid.org/0000-0001-5688-9142

Alfredo Akira Ohnuma Júnior, Universidade do Estado do Rio de Janeiro - UERJ

Eng Civil formado pela UFSCar - Universidade Federal de São Carlos (2000), Mestrado (2005) e Doutorado em Ciências da Eng Ambiental pela USP / EESC - Universidade de São Paulo (2008), Escola de Eng. de São Carlos, Depto de Hidráulica e Saneamento. É Professor Associado da Universidade do Estado do Rio de Janeiro (UERJ), pelo Depto de Eng Sanitária e do Meio Ambiente. Atua na docência dos cursos de Engenharia Civil e Engenharia Ambiental e Sanitária, do Programa de Pós-Graduação Mestrado Profissional em Eng Ambiental (PEAMB) e Doutorado em Engenharia Ambiental (DEAMB), da UERJ.

http://lattes.cnpq.br/0181633220926313

ORCID: https://orcid.org/0000-0002-0772-9334

 

Marcelo Obraczka, Universidade do Estado do Rio de Janeiro - UERJ

Possui graduação em Engenharia Civil e Sanitária pelo Centro de Estudos da Faculdade de Engenharia da UERJ (1985) e mestrado em Ciência Ambiental pela Universidade Federal Fluminense (2008). Doutorado pelo Programa de Planejamento Energético e Ambiental da COPPE/UFRJ em 2014. Realizou com apoio da CAPES um estágio de doutorado sanduíche na Universidade da Califórnia em Santa Cruz(EUA) em 2012 com foco em planejamento ambiental e gerenciamento costeiro. Foi pesquisador no PPE/COPPE através de uma bolsa do Programa de Pós Doutorado da CAPES em 2014/15.

http://lattes.cnpq.br/5082867211968364

ORCID: https://orcid.org/0000-0002-7322-9223

Referências

AHIABLAME, L., & SHAKYA, R. (2016). Modeling flood reduction effects of low impact development at a watershed scale. Journal of Environmental Management, 171, 81–91. https://doi.org/10.1016/j.jenvman.2016.01.036

ANDERSON, M. J., KURTYCZ, D. F. I., & CLINE, J. R. (2015). Baptisia poisoning: A new and toxic look-alike in the neighborhood. Journal of Emergency Medicine, 48(1), 39–42. https://doi.org/10.1016/j.jemermed.2014.09.037

AUTIXIER, L., MAILHOT, A., BOLDUC, S., MADOUX-HUMERY, A. S., GALARNEAU, M., PRÉVOST, M., & DORNER, S. (2014). Evaluating rain gardens as a method to reduce the impact of sewer overflows in sources of drinking water. Science of the Total Environment, 499, 238–247. https://doi.org/10.1016/j.scitotenv.2014.08.030

BADURA, T., KRKOŠKA LORENCOVÁ, E., FERRINI, S., & VAČKÁŘOVÁ, D. (2021). Public support for urban climate adaptation policy through nature-based solutions in Prague. Landscape and Urban Planning, 215, 15. https://doi.org/10.1016/j.landurbplan.2021.104215

BORTOLINI, L., & ZANIN, G. (2018). Hydrological behaviour of rain gardens and plant suitability: A study in the Veneto plain (north-eastern Italy) conditions. Urban Forestry and Urban Greening, 34(August 2017), 121–133. https://doi.org/10.1016/j.ufug.2018.06.007

BROWN, R. A., & HUNT, W. F. (2011). Impacts of Media Depth on Effluent Water Quality and Hydrologic Performance of Undersized Bioretention Cells. Journal of Irrigation and Drainage Engineering, 137(3), 132–143. https://doi.org/10.1061/(asce)ir.1943-4774.0000167

BUZZARD, V., GIL-LOAIZA, J., GRAF GRACHET, N., TALKINGTON, H., YOUNGERMAN, C., TFAILY, M. M., & MEREDITH, L. K. (2021). Green infrastructure influences soil health: Biological divergence one year after installation. Science of the Total Environment, 801. https://doi.org/10.1016/j.scitotenv.2021.149644

CARSTENS, D., & AMER, R. (2019). Spatio-temporal analysis of urban changes and surface water quality. Journal of Hydrology, 569(August 2018), 720–734. https://doi.org/10.1016/j.jhydrol.2018.12.033

CHAFFIN, B. C., SHUSTER, W. D., GARMESTANI, A. S., FURIO, B., ALBRO, S. L., GARDINER, M., SPRING, M. L., & GREEN, O. O. (2016). A tale of two rain gardens: Barriers and bridges to adaptive management of urban stormwater in Cleveland, Ohio. Journal of Environmental Management, 183, 431–441. https://doi.org/10.1016/j.jenvman.2016.06.025

CHAN, F. K. S., GRIFFITHS, J. A., HIGGITT, D., XU, S., ZHU, F., TANG, Y. T., XU, Y., & THORNE, C. R. (2018). “Sponge City” in China—A breakthrough of planning and flood risk management in the urban context. Land Use Policy, 76(March), 772–778. https://doi.org/10.1016/j.landusepol.2018.03.005

CHANDRASENA, G. I., DELETIC, A., & MCCARTHY, D. T. (2016). Biofiltration for stormwater harvesting: Comparison of Campylobacter spp. and Escherichia coli removal under normal and challenging operational conditions. Journal of Hydrology, 537, 248–259. https://doi.org/10.1016/j.jhydrol.2016.03.044

CHURCH, S. P. (2015). Exploring Green Streets and rain gardens as instances of small scale nature and environmental learning tools. Landscape and Urban Planning, 134, 229–240. https://doi.org/10.1016/j.landurbplan.2014.10.021

COLEMAN, S., HURLEY, S., RIZZO, D., KOLIBA, C., & ZIA, A. (2018). From the household to watershed: A cross-scale analysis of residential intention to adopt green stormwater infrastructure. Landscape and Urban Planning, 180(September), 195–206. https://doi.org/10.1016/j.landurbplan.2018.09.005

CUI, L., RUPPRECHT, C. D. D., & SHIBATA, S. (2021). Climate-responsive green-space design inspired by traditional gardens: Microclimate and human thermal comfort of Japanese gardens. Sustainability (Switzerland), 13(5), 1–23. https://doi.org/10.3390/su13052736

DALL’ARA, E., MAINO, E., GATTA, G., TORREGGIANI, D., & TASSINARI, P. (2019). Green Mobility Infrastructures. A landscape approach for roundabouts’ gardens applied to an Italian case study. Urban Forestry and Urban Greening, 37(July 2017), 109–125. https://doi.org/10.1016/j.ufug.2018.03.011

DER. (1999). Low-Impact Development Design Strategies An Integrated Design Approach Low-Impact Development : An Integrated Design Approach (Número June). Department of Environment Resource.

DER - Department of Environmental Resources. (2007). Bioretention Manual, Prince George’s County, Maryland. In Environmental Services Division Department of Environmental Resources.

DIETZ, M. E., & CLAUSEN, J. C. (2006). Saturation to improve pollutant retention in a rain garden. Environmental Science and Technology, 40(4), 1335–1340. https://doi.org/10.1021/es051644f

DING, L., REN, X., GU, R., & CHE, Y. (2019). Implementation of the “sponge city” development plan in China: An evaluation of public willingness to pay for the life-cycle maintenance of its facilities. Cities, 93(500), 13–30. https://doi.org/10.1016/j.cities.2019.04.007

EBRAHIMIAN, A., WADZUK, B., & TRAVER, R. (2019). Evapotranspiration in green stormwater infrastructure systems. Science of the Total Environment, 688, 797–810. https://doi.org/10.1016/j.scitotenv.2019.06.256

FAJARDO-HERRERA, R. J., VALDELAMAR-VILLEGAS, J. C., & MOUTHON BELLO, J. (2019). A Rain Garden for Nitrogen Removal from Storm Runoff in Tropical Cities. Revista de Ciencias Ambientales, 53(2), 132–146. https://www.revistas.una.ac.cr/index.php/ambientales/article/view/12097

FLYNN, K. M., & TRAVER, R. G. (2013). Green infrastructure life cycle assessment: A bio-infiltration case study. Ecological Engineering, 55, 9–22. https://doi.org/10.1016/j.ecoleng.2013.01.004

FOWDAR, H., PAYNE, E., DELETIC, A., ZHANG, K., & MCCARTHY, D. (2022). Advancing the Sponge City Agenda: Evaluation of 22 plant species across a broad range of life forms for stormwater management. Ecological Engineering, 175(December 2021), 11. https://doi.org/10.1016/j.ecoleng.2021.106501

GAO, J., LI, J., LI, Y., XIA, J., & LV, P. (2021). A Distribution Optimization Method of Typical LID Facilities for Sponge City Construction. Ecohydrology and Hydrobiology, 21(1), 13–22. https://doi.org/10.1016/j.ecohyd.2020.09.003

GÉHÉNIAU, N., FUAMBA, M., I, MAHAUT, V., GENDRON, M. R., & DUGUÉ, M. (2015). Monitoring of a Rain Garden in Cold Climate: Case Study of a Parking Lot near Montréal. Journal of Irrigation and Drainage Engineering, 141(6), 04014073. https://doi.org/10.1061/(asce)ir.1943-4774.0000836

GU, C., COCKERILL, K., ANDERSON, W. P., SHEPHERD, F., GROOTHUIS, P. A., MOHR, T. M., WHITEHEAD, J. C., RUSSO, A. A., & ZHANG, C. (2019). Modeling effects of low impact development on road salt transport at watershed scale. Journal of Hydrology, 574(April), 1164–1175. https://doi.org/10.1016/j.jhydrol.2019.04.079

GUO, C., LI, J., LI, H., & LI, Y. (2019). Influences of stormwater concentration infiltration on soil nitrogen, phosphorus, TOC and their relations with enzyme activity in rain garden. Chemosphere, 233, 207–215. https://doi.org/10.1016/j.chemosphere.2019.05.236

GUO, C., LI, J., LI, H., ZHANG, B., MA, M., & LI, F. (2018). Seven-year running effect evaluation and fate analysis of rain gardens in Xi’an, Northwest China. Water (Switzerland), 10(7). https://doi.org/10.3390/w10070944

GUO, J. C. Y., & LUU, T. M. (2015). Operation of Cap Orifice in a Rain Garden. Journal of Hydrologic Engineering, 20(10), 06015002. https://doi.org/10.1061/(asce)he.1943-5584.0001184

HAN, R., LI, J., LI, Y., XIA, J., & GAO, X. (2021). Comprehensive benefits of different application scales of sponge facilities in urban built areas of northwest China. Ecohydrology and Hydrobiology, 21(3), 516–528. https://doi.org/10.1016/j.ecohyd.2021.08.008

HEIDARI, B., SCHMIDT, A. R., & MINSKER, B. (2022). Cost/benefit assessment of green infrastructure: Spatial scale effects on uncertainty and sensitivity. Journal of Environmental Management, 302(PA), 114009. https://doi.org/10.1016/j.jenvman.2021.114009

HONG, J., GERONIMO, F. K., CHOI, H., & KIM, L. H. (2018). Impacts of nonpoint source pollutants on microbial community in rain gardens. Chemosphere, 209, 20–27. https://doi.org/10.1016/j.chemosphere.2018.06.062

HOOVER, F. A., PRICE, J. I., & HOPTON, M. E. (2020). Examining the effects of green infrastructure on residential sales prices in Omaha, Nebraska. Urban Forestry and Urban Greening, 54(October 2019), 126778. https://doi.org/10.1016/j.ufug.2020.126778

HUA, P., YANG, W., QI, X., JIANG, S., XIE, J., GU, X., LI, H., ZHANG, J., & KREBS, P. (2020). Evaluating the effect of urban flooding reduction strategies in response to design rainfall and low impact development. Journal of Cleaner Production, 242, 118515. https://doi.org/10.1016/j.jclepro.2019.118515

JIA, Z., TANG, S., LUO, W., LI, S., & ZHOU, M. (2016). Small scale green infrastructure design to meet different urban hydrological criteria. Journal of Environmental Management, 171, 92–100. https://doi.org/10.1016/j.jenvman.2016.01.016

JOHNSTON, M. R., BALSTER, N. J., & THOMPSON, A. M. (2020). Vegetation alters soil water drainage and retention of replicate rain gardens. Water (Switzerland), 12(11), 1–23. https://doi.org/10.3390/w12113151

KARCZMARCZYK, A., & KAMINSKA, M. (2020). Phosphorus leaching from substrates commonly used in rain gardens. E3S Web of Conferences, 171, 1–5. https://doi.org/10.1051/e3sconf/202017101003

KAYKHOSRAVI, S., KHAN, U. T., & JADIDI, M. A. (2022). A simplified geospatial model to rank LID solutions for urban runoff management. Science of the Total Environment, 831(March), 14. https://doi.org/10.1016/j.scitotenv.2022.154937

KHAN, U. T., VALEO, C., CHU, A., & VAN DUIN, B. (2012a). Bioretention cell efficacy in cold climates: Part 1 - hydrologic performance. Canadian Journal of Civil Engineering, 39(11), 1210–1221. https://doi.org/10.1139/l2012-110

KHAN, U. T., VALEO, C., CHU, A., & VAN DUIN, B. (2012b). Bioretention cell efficacy in cold climates: Part 2 - water quality performance. Canadian Journal of Civil Engineering, 39(11), 1222–1233. https://doi.org/10.1139/l2012-111

LAW, E. P., DIEMONT, S. A. W., & TOLAND, T. R. (2017). A sustainability comparison of green infrastructure interventions using emergy evaluation. Journal of Cleaner Production, 145, 374–385. https://doi.org/10.1016/j.jclepro.2016.12.039

LI, F., CHEN, J., ENGEL, B. A., LIU, Y., WANG, S., & SUN, H. (2021). Assessing the effectiveness and cost efficiency of green infrastructure practices on surface runoff reduction at an urban watershed in China. Water (Switzerland), 13(1). https://doi.org/10.3390/w13010024

LIM, H. S., & LU, X. X. (2016). Sustainable urban stormwater management in the tropics: An evaluation of Singapore’s ABC Waters Program. Journal of Hydrology, 538, 842–862. https://doi.org/10.1016/j.jhydrol.2016.04.063

LIU, K., LI, J., XIA, J., GAO, X., GAO, J., & JIANG, C. (2022). Study on LID Facilities Comprehensive Effect Evaluation : A case in Campus. Ecohydrology & Hydrobiology, xxxx. https://doi.org/10.1016/j.ecohyd.2022.04.001

MA, Y., NALL, J., & O’BANNON, D. (2018). Assessment of Orifice-Controlled Flow Monitoring Device for Rain Garden Performance. Journal of Sustainable Water in the Built Environment, 4(2), 05018002. https://doi.org/10.1061/jswbay.0000855

Management Environmental Services Sustainable - MESS. (2005). NE Siskiyou Green Street Project. https://www.portlandoregon.gov/bes/article/78299

MANIQUIZ-REDILLAS, M. C., & KIM, L. H. (2016). Evaluation of the capability of low-impact development practices for the removal of heavy metal from urban stormwater runoff. Environmental Technology (United Kingdom), 37(18), 2265–2272. https://doi.org/10.1080/09593330.2016.1147610

MEHRING, A. S., HATT, B. E., KRAIKITTIKUN, D., ORELO, B. D., RIPPY, M. A., GRANT, S. B., GONZALEZ, J. P., JIANG, S. C., AMBROSE, R. F., & LEVIN, L. A. (2016). Soil invertebrates in Australian rain gardens and their potential roles in storage and processing of nitrogen. Ecological Engineering, 97, 138–143. https://doi.org/10.1016/j.ecoleng.2016.09.005

MELO, TA, COUTINHO, A, CABRAL, J. J., ANTÔNIO C. D. ANTONINO, & CIRILO, J. A. (2014). Jardim de chuva: sistema de biorretenção para o manejo das água pluviais urbanas. Ambiente Construído, 14(4), 147–165.

MENG, T., & HSU, D. (2019). Stated preferences for smart green infrastructure in stormwater management. Landscape and Urban Planning, 187(March), 1–10. https://doi.org/10.1016/j.landurbplan.2019.03.002

MORASH, J., WRIGHT, A., LEBLEU, C., MEDER, A., KESSLER, R., BRANTLEY, E., & HOWE, J. (2019). Increasing sustainability of residential areas using rain gardens to improve pollutant capture, biodiversity and ecosystem resilience. Sustainability (Switzerland), 11(12). https://doi.org/10.3390/SU11123269

NICHOLS, W., WELKER, A., TRAVER, R., & TU, M. “PETER”. (2021). Modeling Seasonal Performance of Operational Urban Rain Garden Using HYDRUS-1D. Journal of Sustainable Water in the Built Environment, 7(3), 04021005. https://doi.org/10.1061/jswbay.0000941

OBWB. (2021). Slow it. Spread it. Sink it! (Second Edi). Okanaguan Basin Water Board. www.okwaterwise.ca

PAULIN, M., REMME, R. P., & DE NIJS, T. (2019). Amsterdam’s Green Infrastructure: Valuing Nature’s Contributions to People. RIVM Letter report 2019-0021, 79.

PENNINO, M. J., MCDONALD, R. I., & JAFFE, P. R. (2016). Watershed-scale impacts of stormwater green infrastructure on hydrology, nutrient fluxes, and combined sewer overflows in the mid-Atlantic region. Science of the Total Environment, 565, 1044–1053. https://doi.org/10.1016/j.scitotenv.2016.05.101

PERALES-MOMPARLER, S., ANDRÉS-DOMÉNECH, I., HERNÁNDEZ-CRESPO, C., VALLÉS-MORÁN, F., MARTÍN, M., ESCUDER-BUENO, I., & ANDREU, J. (2017). The role of monitoring sustainable drainage systems for promoting transition towards regenerative urban built environments: a case study in the Valencian region, Spain. Journal of Cleaner Production, 163, 113–124. https://doi.org/10.1016/j.jclepro.2016.05.153

QIN, Y. (2020). Urban flooding mitigation techniques: A systematic review and future studies. Water (Switzerland), 12(12). https://doi.org/10.3390/w12123579

RAINEY, W., MCHALE, M., & ARABI, M. (2022). Characterization of co-benefits of Green stormwater infrastructure across ecohydrologic regions in the United States. Urban Forestry & Urban Greening, 70(February), 127514. https://doi.org/10.1016/j.ufug.2022.127514

REIS, R., & ILHA, M. (2014). Comparação de desempenho hidrológico de sistemas de infiltração de água de chuva: poço de infiltração e jardim de chuva. Ambiente Construído, 14(2), 79–90.

ROSENBERGER, L., LEANDRO, J., PAULEIT, S., & ERLWEIN, S. (2021). Sustainable stormwater management under the impact of climate change and urban densification. Journal of Hydrology, 596, 11. https://doi.org/10.1016/J.JHYDROL.2021.126137

ROY, A. H., RHEA, L. K., MAYER, A. L., SHUSTER, W. D., BEAULIEU, J. J., HOPTON, M. E., MORRISON, M. A., & ST AMAND, A. (2014). How much is enough? Minimal responses of water quality and stream biota to partial retrofit stormwater management in a suburban neighborhood. PLoS ONE, 9(1), 1–14. https://doi.org/10.1371/journal.pone.0085011

SHAFIQUE, M., KIM, R., & RAFIQ, M. (2018). Green roof benefits, opportunities and challenges – A review. Renewable and Sustainable Energy Reviews, 90(March), 757–773. https://doi.org/10.1016/j.rser.2018.04.006

SHIN, D. W., & MCCANN, L. (2018). Enhancing Adoption Studies: The Case of Residential Stormwater Management Practices in the Midwest. Agricultural and Resource Economics Review, 47(1), 32–65. https://doi.org/10.1017/age.2017.3

SILVA, G. N. DA;, ALVES, L. D., SANTOS, I. E. DOS;, BILA, D. M., JÚNIOR, A. A. O., & CORRÊA, S. M. (2020). An assessment of atmospheric deposition of metals and the physico - chemical parameters of a rainwater harvesting system in Rio de Janeiro Brazil, by means of statistical multivariate analysis. Revista Ambiente e Agua, 15(4). https://doi.org/10.4136

SIWIEC, E., ERLANDSEN, A. M., & VENNEMO, H. (2018). City Greening by Rain Gardens - Costs and Benefits. Ochrona Srodowiska i Zasobow Naturalnych, 29(1), 1–5. https://doi.org/10.2478/oszn-2018-0001

SØBERG, L. C., VIKLANDER, M., & BLECKEN, G. T. (2017). Do salt and low temperature impair metal treatment in stormwater bioretention cells with or without a submerged zone? Science of the Total Environment, 579, 1588–1599. https://doi.org/10.1016/j.scitotenv.2016.11.179

SONG, C. (2022). Application of nature-based measures in China’s sponge city initiative: Current trends and perspectives. Nature-Based Solutions, 2(December 2021), 100010. https://doi.org/10.1016/j.nbsj.2022.100010

STOBBELAAR, D. J., VAN DER KNAAP, W., & SPIJKER, J. (2022). Transformation towards Green Cities: Key Conditions to Accelerate Change. Sustainability (Switzerland), 14(11), 1–16. https://doi.org/10.3390/su14116410

TARGA, M. DOS S., BATISTA, G. T., DINIZ, H. N., DIAS, N. W., & MATOS, F. C. DE. (2012). Urbanização e escoamento superficial na bacia hidrográfica do Igarapé Tucunduba, Belém, PA, Brasil. Revista Ambiente e Agua, 7(2), 120–142. https://doi.org/10.4136/1980-993X

TIRPAK, R. A., AFROOZ, A. N., WINSTON, R. J., VALENCA, R., SCHIFF, K., & MOHANTY, S. K. (2021). Conventional and amended bioretention soil media for targeted pollutant treatment: A critical review to guide the state of the practice. Water Research, 189, 17. https://doi.org/10.1016/j.watres.2020.116648

UACDC. (2010). LID - Low Impact Development: a design manual for urban areas. In University of Arkansas Press (Vol. 1). University of Arkansas Press. https://doi.org/10.4324/9780429281235-2

URETA, J., MOTALLEBI, M., SCARONI, A. E., LOVELACE, S., & URETA, J. C. (2021). Understanding the public’s behavior in adopting green stormwater infrastructure. Sustainable Cities and Society, 69(March), 102815. https://doi.org/10.1016/j.scs.2021.102815

VALINSKI, N. A., & CHANDLER, D. G. (2015). Infiltration performance of engineered surfaces commonly used for distributed stormwater management. Journal of Environmental Management, 160, 297–305. https://doi.org/10.1016/j.jenvman.2015.06.032

WANG, H., SUN, Y., ZHANG, L., WANG, W., & GUAN, Y. (2021). Enhanced nitrogen removal and mitigation of nitrous oxide emission potential in a lab-scale rain garden with internal water storage. Journal of Water Process Engineering, 42, 9. https://doi.org/10.1016/j.jwpe.2021.102147

WANG, J., CHUA, L. H. C., & SHANAHAN, P. (2019). Hydrological modeling and field validation of a bioretention basin. Journal of Environmental Management, 240(November 2018), 149–159. https://doi.org/10.1016/j.jenvman.2019.03.090

WANG, R., ZHANG, X., & LI, M. H. (2019). Predicting bioretention pollutant removal efficiency with design features: A data-driven approach. Journal of Environmental Management, 242(April), 403–414. https://doi.org/10.1016/j.jenvman.2019.04.064

WILFONG, M. T., CASEY, R. E., & OWNBY, D. R. (2021). Performance of commercially available soil amendments for enhanced Cu attenuation in bioretention media. Journal of Environmental Management, 295, 9. https://doi.org/10.1016/j.jenvman.2021.113047

WILKERSON, B., ROMANENKO, E., & BARTON, D. N. (2022). Modeling reverse auction-based subsidies and stormwater fee policies for Low Impact Development (LID) adoption: a system dynamics analysis. Sustainable Cities and Society, 79(December 2021), 18. https://doi.org/10.1016/j.scs.2021.103602

XU, C., TANG, T., JIA, H., XU, M., XU, T., LIU, Z., LONG, Y., & ZHANG, R. (2019). Benefits of coupled green and grey infrastructure systems: Evidence based on analytic hierarchy process and life cycle costing. Resources, Conservation and Recycling, 151(April), 1–10. https://doi.org/10.1016/j.resconrec.2019.104478

YUAN, J., & DUNNETT, N. (2018). Plant selection for rain gardens: Response to simulated cyclical flooding of 15 perennial species. Urban Forestry and Urban Greening, 35(January), 57–65. https://doi.org/10.1016/j.ufug.2018.08.005

YUE, C., LI, L. Y., & JOHNSTON, C. (2018). Exploratory study on modification of sludge-based activated carbon for nutrient removal from stormwater runoff. Journal of Environmental Management, 226(July), 37–45. https://doi.org/10.1016/j.jenvman.2018.07.089

ZHANG, K., DELETIC, A., PAGE, D., & MCCARTHY, D. T. (2015). Surrogates for herbicide removal in stormwater biofilters. Water Research, 81, 64–71. https://doi.org/10.1016/j.watres.2015.05.043

ZHANG, Z., LI, J., JIANG, C., LI, Y., & ZHANG, J. (2022). Impact of nutrient removal on microbial community in bioretention facilities with different underlying types/built times at field scale. Ecological Engineering, 176(June 2021), 106542. https://doi.org/10.1016/j.ecoleng.2022.106542

Downloads

Publicado

2023-10-10

Como Citar

Gondim, F., Ohnuma Júnior, A. A., & Obraczka, M. (2023). JARDINS DE CHUVA: ATUALIZAÇÕES SOBRE A TÉCNICA A PARTIR DE UMA REVISÃO SISTEMÁTICA: RAIN GARDENS: TECHNIQUE UPDATES BASED ON A SYSTEMATIC REVIEW. IX Sustentável, 9(5), 201–215. https://doi.org/10.29183/2447-3073.MIX2023.v9.n5.201-215