COMPORTAMENTO MECÂNICO DO POLIETILENO DE ALTA DENSIDADE REFORÇADO COM NANOPLATAS DE GRAFENO E TECIDO DE JUTA
MECHANICAL BEHAVIOR OF HIGH-DENSITY POLYETHYLENE REINFORCED WITH GRAPHENE NANOPLATELETS AND JUTE FABRIC
DOI:
https://doi.org/10.29183/2447-3073.MIX2023.v9.n3.50-65Palavras-chave:
Nanocomposito, Tecido de Juta, Nanoplaqueta de grafeno, Polietileno de Alta DensidadeResumo
Devido às características sustentáveis, as fibras lignocelulósicas naturais (FNLs) e os compósitos reforçados com nanoplaquetas de grafeno (GNP) estão atualmente tendo aplicações em uma ampla gama de campos industriais. Assim, no presente trabalho, foram investigadas as propriedades mecânicas e de flexão do polietileno de alta densidade (PEAD) reforçado com 0, 0,10, 0,25 e 0,50% em peso de GNP combinado com 50% em volume de tecido de juta. Em particular, o compósito JutaJuta/HDPE/0,25%GNP superou a resistência daqueles descritos na literatura, mesmo para alguns com maior GNP. Melhorias de 38% foram observadas para o módulo de flexão do compósito em comparação com o compósito de juta/HDPE livre de GNP. Com relação às propriedades de tração, a ductilidade da Juta/HDPE/0,25%GNP foi aumentada em 112% quando comparada à Juta/HDPE. Além disso, a tenacidade do compósito Juta/HDPE/0,25%GNP foi 161% superior à do compósito Juta/HDPE. A análise SEM das superfícies de fratura mostrou que, à medida que a concentração de GNP aumenta, os mecanismos de fratura mudam de uma banda de cisalhamento para uma mistura complexa de fibrilação, rasgo e fissura. Consequentemente, os resultados revelam o novo nanocompósito Juta/HDPE/0,25%GNP como um material promissor para aplicações em engenharia.
Referências
NURAZZI, N. M., ASYRAF, M. R. M., FATIMAH ATHIYAH, S., SHAZLEEN, S. S., RAFIQAH, S. A., HARUSSANI, M. M., ... & KHALINA, A. A review on mechanical performance of hybrid natural fiber polymer composites for structural applications. Polymers, 13(13), 2170. 2021.
SATHISH, S., KARTHI, N., PRABHU, L., GOKULKUMAR, S., BALAJI, D., VIGNESHKUMAR, N., ... & DINESH, V. P. A review of natural fiber composites: Extraction methods, chemical treatments and applications. Materials Today: Proceedings, 45, 8017-8023. 2021.
MONTEIRO, S. N., LOPES, F. P. D., BARBOSA, A. P., BEVITORI, A. B., SILVA, I. L. A. D., & COSTA, L. L. D. Natural lignocellulosic fibers as engineering materials—an overview. Metallurgical and Materials Transactions A, 42(10), 2963-2974. 2011.
KANNAN, G., & THANGARAJU, R. Recent progress on natural lignocellulosic fiber reinforced polymer composites: A review. Journal of Natural Fibers, 1-32. 2021.
OKOLIE, J. A., NANDA, S., DALAI, A. K., & KOZINSKI, J. A. Chemistry and specialty industrial applications of lignocellulosic biomass. Waste and Biomass Valorization, 12(5), 2145-2169. 2021.
ASYRAF, M. R. M., ISHAK, M. R., NORRRAHIM, M. N. F., NURAZZI, N. M., SHAZLEEN, S. S., ILYAS, R. A., ... & RAZMAN, M. R. Recent advances of thermal properties of sugar palm lignocellulosic fibre reinforced polymer composites. International journal of biological macromolecules, 193, 1587-1599. 2021.
RANGAPPA, S. M., SIENGCHIN, S., PARAMESWARANPILLAI, J., JAWAID, M., & OZBAKKALOGLU, T. Lignocellulosic fiber reinforced composites: Progress, performance, properties, applications, and future perspectives. Polymer Composites, 43(2), 645-691. 2022.
NAYAK, S., & KUMAR KHUNTIA, S. Development and study of properties of Moringa oleifera fruit fibers/polyethylene terephthalate composites for packaging applications. Composites Communications, 15, 113-119. 2019.
YANG, J., CHING, Y. C., & CHUAH, C. H. Applications of lignocellulosic fibers and lignin in bioplastics: A review. Polymers, 11(5), 751. 2019.
SINGH, B., & GUPTA, M. Natural fiber composites for building applications. In Natural fibers, biopolymers, and biocomposites (pp. 283-313). CRC Press. 2005.
MOHAMMED, L., ANSARI, M. N., PUA, G., JAWAID, M., & ISLAM, M. S. (2015). A review on natural fiber reinforced polymer composite and its applications. International journal of polymer science, 2015.
JOSHI, S. V., DRZAL, L. T., MOHANTY, A. K., & ARORA, S. Are natural fiber composites environmentally superior to glass fiber reinforced composites?. Composites Part A: Applied science and manufacturing, 35(3), 371-376. 2004.
NURAZZI, N. M., ASYRAF, M. R. M., KHALINA, A., ABDULLAH, N., AISYAH, H. A., RAFIQAH, S. A., ... & SAPUAN, S. M. A review on natural fiber reinforced polymer composite for bullet proof and ballistic applications. Polymers, 13(4), 646. 2021.
NAVEEN, J., JAYAKRISHNA, K., HAMEED SULTAN, M. T. B., & AMIR, S. M. M. Ballistic performance of natural fiber based soft and hard body armour-a mini review. Frontiers in Materials, 7, 608139. 2020.
COSTA, U. O., NASCIMENTO, L. F. C., GARCIA, J. M., MONTEIRO, S. N., LUZ, F. S. D., PINHEIRO, W. A., & GARCIA FILHO, F. D. C. Effect of graphene oxide coating on natural fiber composite for multilayered ballistic armor. Polymers, 11(8), 1356. 2019.
MONTEIRO, S. N., DRELICH, J. W., LOPERA, H. A. C., NASCIMENTO, L. F. C., DA LUZ, F. S., DA SILVA, L. C., ... & BEZERRA, W. B. A. Natural fibers reinforced polymer composites applied in ballistic multilayered armor for personal protection—an overview. Green materials engineering, 33-47. 2019.
GARCIA FILHO, F. C., LUZ, F. S., OLIVEIRA, M. S., BEZERRA, W. B., BARBOSA, J. D., & MONTEIRO, S. N. Influence of rigid brazilian natural fiber arrangements in polymer composites: Energy absorption and ballistic efficiency. Journal of Composites Science, 5(8), 201. 2021.
AMEER, H., AHMAD, S., NAWAB, Y., ALI, Z., & ULLAH, T. Natural fiber–reinforced composites for ballistic protection. In Composite Solutions for Ballistics (pp. 229-248). Woodhead Publishing. 2021.
GARCIA FILHO, F. D. C., OLIVEIRA, M. S., PEREIRA, A. C., NASCIMENTO, L. F. C., MATHEUS, J. R. G., & MONTEIRO, S. N. Ballistic behavior of epoxy matrix composites reinforced with piassava fiber against high energy ammunition. Journal of Materials Research and Technology, 9(2), 1734-1741. 2020.
SIVA SANKAR, P., & SINGH, S. B. A Review of Natural Fiber Composites for Structural, Infrastructural and Ballistic Applications. Emerging Trends of Advanced Composite Materials in Structural Applications, 353-373. 2021.
GOWDA, T. M., NAIDU, A. C. B., & CHHAYA, R. Some mechanical properties of untreated jute fabric-reinforced polyester composites. Composites Part A: applied science and manufacturing, 30(3), 277-284. 1999.
HONAKER, K., VAUTARD, F., & DRZAL, L. T. Investigating the mechanical and barrier properties to oxygen and fuel of high density polyethylene–graphene nanoplatelet composites. Materials Science and Engineering: B, 216, 23-30. 2017.
WANG, Y., LIU, X., SHI, Z., LIN, Y., YANG, Y., YANG, Q., ... & LAN, T. Rheological Behavior of High Density Polyethylene (HDPE) Filled with Corn Stalk Biochar. ChemistrySelect, 6(38), 10418-10428. 2021.
AJI, I. S., ZAINUDIN, E. S., KHALINA, A., SAPUAN, S. M., & KHAIRUL, M. D. Studying the effect of fiber size and fiber loading on the mechanical properties of hybridized kenaf/PALF-reinforced HDPE composite. Journal of Reinforced Plastics and Composites, 30(6), 546-553. 2011.
SALLEH, F. M., HASSAN, A., YAHYA, R., & AZZAHARI, A. D. Effects of extrusion temperature on the rheological, dynamic mechanical and tensile properties of kenaf fiber/HDPE composites. Composites Part B: Engineering, 58, 259-266. 2014.
EL-ZAYAT, M. M., ABDEL-HAKIM, A., & MOHAMED, M. A. Effect of gamma radiation on the physico mechanical properties of recycled HDPE/modified sugarcane bagasse composite. Journal of Macromolecular Science, Part A, 56(2), 127-135. 2019.
VASU, A., REDDY, C., DANABOYINA, S., MANCHALA, G., & CHAVALI, M. The Improvement in mechanical properties of coconut shell powder as filter in HDPE composites. J. Polym. Sci. Appl, 1(2), 2-7. 2017.
CHANDEKAR, H., CHAUDHARI, V., & WAIGAONKAR, S. A review of jute fiber reinforced polymer composites. Materials Today: Proceedings, 26, 2079-2082. 2020.
SONG, H., LIU, J., HE, K., & AHMAD, W. A comprehensive overview of jute fiber reinforced cementitious composites. Case Studies in Construction Materials, 15, e00724. 2021.
GOGNA, E., KUMAR, R., SAHOO, A. K., & PANDA, A. A comprehensive review on jute fiber reinforced composites. Advances in industrial and production engineering, 459-467. 2019.
SINGH, H., SINGH, J. I. P., SINGH, S., DHAWAN, V., & TIWARI, S. K. A brief review of jute fibre and its composites. Materials Today: Proceedings, 5(14), 28427-28437. 2018.
YASHAS GOWDA, T. G., SANJAY, M. R., SUBRAHMANYA BHAT, K., MADHU, P., SENTHAMARAIKANNAN, P., & YOGESHA, B. Polymer matrix-natural fiber composites: An overview. Cogent Engineering, 5(1), 1446667. 2018.
KHAN, M. A., RAHAMAN, M. S., AL-JUBAYER, A., & ISLAM, J. M. M. Modification of jute fibers by radiation-induced graft copolymerization and their applications. Cellulose-Based Graft Copolymers: Structure and Chemistry; Thakur, VK, Ed, 209-235. 2015.
HUSSAIN, S. A., PANDURANGADU, V., & PALANIKUAMR, K. Mechanical properties of green coconut fiber reinforced HDPE polymer composite. International Journal of Engineering Science and Technology, 3(11), 7942-7952. 2011.
GENG, Y., WANG, S. J., & KIM, J. K. Preparation of graphite nanoplatelets and graphene sheets. Journal of colloid and interface science, 336(2), 592-598. 2009.
EVGIN, T., TURGUT, A., HAMAOUI, G., SPITALSKY, Z., HORNY, N., MICUSIK, M., ... & OMASTOVA, M. Size effects of graphene nanoplatelets on the properties of high-density polyethylene nanocomposites: morphological, thermal, electrical, and mechanical characterization. Beilstein journal of nanotechnology, 11(1), 167-179. 2020.
HOPE, J. T., SUN, W., KEWALRAMANI, S., SAHA, S., LAKHE, P., SHAH, S. A., ... & HULE, R. A. Scalable production of graphene nanoplatelets for energy storage. ACS Applied Nano Materials, 3(10), 10303-10309. 2020.
JEON, I. Y., BAE, S. Y., SEO, J. M., & BAEK, J. B. Scalable production of edge‐functionalized graphene nanoplatelets via mechanochemical ball‐milling. Advanced Functional Materials, 25(45), 6961-6975. 2015.
LI, B., & ZHONG, W. H. Review on polymer/graphite nanoplatelet nanocomposites. Journal of materials science, 46(17), 5595-5614. 2011.
CATALDI, P., ATHANASSIOU, A., & BAYER, I. S. Graphene nanoplatelets-based advanced materials and recent progress in sustainable applications. Applied Sciences, 8(9), 1438. 2018.
ESCOCIO, V. A., VISCONTE, L. L., CAVALCANTE, A. D. P., FURTADO, A. M. S., & PACHECO, E. B. Study of mechanical and morphological properties of bio-based polyethylene (HDPE) and sponge-gourds (Luffa-cylindrica) agroresidue composites. In AIP Conference Proceedings (Vol. 1664, No. 1, p. 060012). AIP Publishing LLC. 2015.
TOMASI TESSARI, B., VARGAS, N., RODRIGUES DIAS, R., MIRANDA PEREIRA, I., ROSSA BELTRAMI, L. V., LAVORATTI, A., ... & ZATTERA, A. J. Influence of the addition of graphene nanoplatelets on the ballistic properties of HDPE/aramid multi-laminar composites. Polymer-Plastics Technology and Materials, 61(4), 363-373. 2022.
ASTM International. Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials; D3039/D3039M − 17; ASTM International: West Conshohocken, PA, USA. 2017.
ASTM International. Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plasticsand Electrical Insulating Materials; D790 − 17; ASTM International: West Conshohocken, PA, USA. 2017.
WANG, G., YANG, J., PARK, J., GOU, X., WANG, B., LIU, H., & YAO, J. Facile synthesis and characterization of graphene nanosheets. The Journal of Physical Chemistry C, 112(22), 8192-8195. 2008.
SUJITH, R., CHAUHAN, P. K., GANGADHAR, J., & MAHESHWARI, A. Graphene nanoplatelets as nanofillers in mesoporous silicon oxycarbide polymer derived ceramics. Scientific reports, 8(1), 1-9. 2018.
ARMUGAM, A., HOSAKOPPA S, N., & HOLAVANAHALLI DORAISWAMY, S. Enhanced corrosion resistance of atmospheric plasma-sprayed zirconia–GNP composite by graphene oxide nanoplatelet encapsulation. Applied Physics A, 126(8), 1-12. 2020.
WANG, F., & DRZAL, L. T. Development of stiff, tough and conductive composites by the addition of graphene nanoplatelets to polyethersulfone/epoxy composites. Materials, 11(11), 2137. 2018.
GUERRA, V., WAN, C., DEGIRMENCI, V., SLOAN, J., PRESVYTIS, D., WATSON, M., & MCNALLY, T. Characterisation of graphite nanoplatelets (GNP) prepared at scale by high-pressure homogenisation. Journal of Materials Chemistry C, 7(21), 6383-6390. 2019.
XIANG, D., WANG, L., TANG, Y., ZHAO, C., HARKIN‐JONES, E., & LI, Y. Effect of phase transitions on the electrical properties of polymer/carbon nanotube and polymer/graphene nanoplatelet composites with different conductive network structures. Polymer International, 67(2), 227-235. 2018.
HONAKER, K., VAUTARD, F., & DRZAL, L. T. Influence of processing methods on the mechanical and barrier properties of HDPE-GNP nanocomposites. Advanced Composites and Hybrid Materials, 4(3), 492-504. 2021.
SARKER, F., KARIM, N., AFROJ, S., KONCHERRY, V., NOVOSELOV, K. S., & POTLURI, P. High-performance graphene-based natural fiber composites. ACS applied materials & interfaces, 10(40), 34502-34512. 2018.
PAPAGEORGIOU, D. G., KINLOCH, I. A., & YOUNG, R. J. Mechanical properties of graphene and graphene-based nanocomposites. Progress in Materials Science, 90, 75-127. 2017.
MOHANTY, S., & NAYAK, S. K. Mechanical and rheological characterization of treated jute-HDPE composites with a different morphology. Journal of Reinforced Plastics and Composites, 25(13), 1419-1439. 2006.
GUPTA, M. K., SRIVASTAVA, R. K., & BISARIA, H. Potential of jute fibre reinforced polymer composites: a review. Int. J. Fiber Text. Res, 5(3), 30-38. 2015.
RAFIEE, M. A., RAFIEE, J., WANG, Z., SONG, H., YU, Z. Z., & KORATKAR, N. Enhanced mechanical properties of nanocomposites at low graphene content. ACS nano, 3(12), 3884-3890. 2009.
SHEN, X. J., LIU, Y., XIAO, H. M., FENG, Q. P., YU, Z. Z., & FU, S. Y. The reinforcing effect of graphene nanosheets on the cryogenic mechanical properties of epoxy resins. Composites Science and Technology, 72(13), 1581-1587. 2012.
CHIENG, B. W., IBRAHIM, N. A., WAN YUNUS, W. M. Z., HUSSEIN, M. Z., & LOO, Y. Y. Effect of graphene nanoplatelets as nanofiller in plasticized poly (lactic acid) nanocomposites. Journal of Thermal Analysis and Calorimetry, 118(3), 1551-1559. 2014.
HAN, S., MENG, Q., QIU, Z., OSMAN, A., CAI, R., YU, Y., ... & ARABY, S. Mechanical, toughness and thermal properties of 2D material-reinforced epoxy composites. Polymer, 184, 121884. 2019.
TARANI, E., CHRYSAFI, I., KÁLLAY-MENYHÁRD, A., PAVLIDOU, E., KEHAGIAS, T., BIKIARIS, D. N., ... & CHRISSAFIS, K. Influence of graphene platelet aspect ratio on the mechanical properties of HDPE nanocomposites: Microscopic observation and micromechanical modeling. Polymers. 12(8). 2020.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Autores
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Aviso de Direito Autoral Creative Commons
1. Política para Periódicos de Acesso Livre
Autores que publicam nesta revista concordam com os seguintes termos:
a. Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
b. Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
c. Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto após o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).