TECNOLOGIAS E SISTEMAS INTELIGENTES DE ÁGUA NO AMBIENTE URBANO: UMA ANÁLISE DA LITERATURA

TECHNOLOGIES AND INTELLIGENT WATER SYSTEMS IN THE URBAN ENVIRONMENT: A LITERATURE ANALYSIS

Autores

  • Adriana Kunen UTFPR - Universidade Tecnológica Federal do Paraná http://orcid.org/0000-0003-3312-2461
  • Anderson Saccol Ferreira UTFPR - Universidade Tecnológica Federal do Paraná
  • Regina Negri Pagani UTFPR - Universidade Tecnológica Federal do Paraná
  • Gilson Ditzel Santos UTFPR - Universidade Tecnológica Federal do Paraná

DOI:

https://doi.org/10.29183/2447-3073.MIX2023.v9.n2.91-105

Palavras-chave:

Água, Sistema inteligente, Tecnologias, Gestão de água urbana, Cidades inteligentes

Resumo

Na atualidade, o uso irracional da água nas cidades torna-se um dos fatores que contribui para agravar várias problemáticas como a poluição e a escassez destes recursos. A literatura aponta vários desafios como o consumo irresponsável, a falta de reservas naturais e ausência de tecnologia adequada. Cabe compreender estas tecnologias e seus sistemas na contemporaneidade. O artigo questiona de que forma a literatura aborda as relações entre a tecnologia, sistemas, água e inteligência. O estudo visa realizar uma revisão da literatura sobre os esforços de pesquisas acerca dos sistemas inteligentes de água. Para a revisão utilizou-se diferentes bases de dados com publicações entre 2020 a 2022. Destes, 18 artigos científicos foram analisados. Notou-se a utilização das tecnologias na oferta de soluções para os problemas ambientais da escassez de água. Apontamos soluções que contribuem para o desenvolvimento da região e das cidades e podem transformá-las em cidades mais inteligentes.

Biografia do Autor

Adriana Kunen, UTFPR - Universidade Tecnológica Federal do Paraná

Doutoranda em Desenvolvimento Regional pela Universidade Tecnológica Federal do Paraná (PPGDR-UTFPR) e Mestre em Engenharia Civil pela UTFPR. Possui graduação em Arquitetura e Urbanismo pela Universidade Tuiuti do Paraná (UTP). Professora assistente do Departamento de Arquitetura e Urbanismo da Universidade Paranaense. 

 

Anderson Saccol Ferreira, UTFPR - Universidade Tecnológica Federal do Paraná

Doutorando em Desenvolvimento Regional pela Universidade Tecnológica Federal do Paraná (PPGDR-UTFPR) e Mestre em Administração (UNOESC). Possui graduação em Arquitetura e Urbanismo pela UNOESC. Professor e Coordenador do Departamento de Arquitetura e Urbanismo da UNOESC.

 

Regina Negri Pagani, UTFPR - Universidade Tecnológica Federal do Paraná

Doutora em Engenharia de Produção pela Universidade Tecnológica Federal do Paraná (UTFPR) com período sanduíche na Université de Technologie de Compiègne - Sorbonne Universités e Mestre em Engenharia de Produção pela UTFPR. Possui graduação em Administração de Empresas (UEM). Professora Adjunta do Magistério Superior no Departamento Acadêmico de Engenharia de Produção (DAENP) e no Programa de Pós-Graduação em Engenharia de Produção (Mestrado e Doutorado) da UTFPR.

Gilson Ditzel Santos, UTFPR - Universidade Tecnológica Federal do Paraná

Doutor em Administração pela Faculdade de Economia, Administração e Contabilidade da Universidade de São Paulo (USP) e Mestre em Ciências de Administração e Estudos de Políticas Públicas pela Universidade de Tsukuba, Japão. Possui graduação em Engenharia Industrial Elétrica - Ênfase em Eletrônica/Telecomunicações pela Universidade Tecnológica Federal do Paraná (UTFPR). Professor Titular da UTFPR e dos Programas de Pós-Graduação em Desenvolvimento Regional (Mestrado e Doutorado) e Engenharia de Produção e Sistemas (Mestrado).

Referências

ADAMS, M. N.; JOKONYA, O. An investigation of smart water meter adoption factors at universities. Procedia Computer Science, v. 196, p. 324-331, 2022. Disponível em: <https://doi.org/10.1016/j.procs.2021.12.020>. Acesso em: 07 abr. 2022.

AHAD, M. A; PAIVA, S.; TRIPATHI, G.; FEROZ, N. Enabling technologies and sustainable smart cities. Sustainable Cities and Society, v. 61, 2020. Disponível em: <https://doi.org/10.1016/j.scs.2020.102301>. Acesso em: 10 abr. 2022.

AHVENNIEMI, H.; HUOVILA, A.; PINTO-SEPPÄ, I.; AIRAKSINEN, M. What are the differences between sustainable and smart cities? Cities, v. 60, p. 234-245, 2017. Disponível em: <https://doi.org/10.1016/j.cities.2016.09.009>. Acesso em: 10 abr. 2022.

AIVAZIDOU, E.; BANIAS, G.; LAMPRIDI, M.; VASILEIADIS, G.; ANAGNOSTIS, A.; PAPAGEORGIOU, E.; BOCHTIS, D. Smart technologies for sustainable water management: An urban analysis. Sustainability, v. 13, n. 24, p. 13940, 2021. Disponível em: <https://doi.org/10.3390/su132413940>. Acesso em: 07 abr. 2022.

AL-NASRAWI, S.; ADAMS, C.; EL-ZAART, A. A conceptual multidimensional model for assessing smart sustainable cities, Journal of Information Systems and Technology Management, v. 12, n. 3, p. 541-558, 2015. Disponível em: <https://doi.org/10.4301/S1807-17752015000300003>. Acesso em: 28 maio 2022.

ALLAM, Z.; DHUNNY, Z. A. On big data, artificial intelligence and smart cities.Cities, v. 89, p. 80-91, 2019. Disponível em: <https://doi.org/10.1016/j.cities.2019.01.032>. Acesso em: 10 abr. 2022.

ARBOLINO, R.; CARLUCCI, F.; CIRA, A.; YIGITCANLAR, T.; IOPPOLO, G. Mitigating regional disparities through microfinancing: An analysis of microcredit as a sustainability tool for territorial development in Italy. Land Use Policy, v. 70, n. 1, p. 281-288, 2018. Disponível em: <https://doi.org/10.1016/j.landusepol.2017.10.042>. Acesso em: 08 abr. 2022.

ARBOLINO, R.; CARLUCCI, F.; IOPPOLO, G.; YIGITCANLAR, T. Efficiency of the EU regulation on greenhouse gas emissions in Italy: The hierarchical cluster analysis approach. Ecological Indicators, v. 81, p.115-123, 2017. Disponível em: <https://doi.org/10.1016/j.ecolind.2017.05.053>. Acesso em: 08 abr. 2022.

ARBUÉS, F.; GARCÍA-VALIÑAS, M. Á.; MARTÍNEZ, R. M. Estimation of residential water demand: a state-of-the-art review. The Journal of Socio-Economics, v. 32, n.1, p. 81-102, 2003. Disponível em: <https://doi.org/10.1016/S1053-5357(03)00005-2>. Acesso em: 08 abr. 2022.

BIBRI, S. E., KROGSTIE, J. Smart Sustainable Cities of the Future: An Extensive Interdisciplinary Literature Review. Sustainable Cities and Society, v. 31, p. 183–212. 2017. Disponível em: <https://doi.org/10.1016/j.scs.2017.02.016>. Acesso em: 25 maio 2022.

BISHT, S.; SINGH, O.; AGARWAL, A. An approach towards sustainable development of smart city. 2020 International Conferenceon Electrical and Electronics Engineering (ICE3), p. 146-151, 2020. Disponível em: <https://doi.org/10.1109/ICE348803.2020.9122960>. Acesso em: 07 abr. 2022.

BREVIGLIERI, G. V.; OSÓRIO, G. I. D. S.; LEFÈVRE, G. B. New instruments for water management in Brazil. RAUSP Management Journal, v. 55, n. 1, p. 55-69, 2020. Disponível em: <https://doi.org/10.1108/RAUSP-09-2018-0091>. Acesso em: 07 abr. 2022.

BOANO, F.; CARUSO, A.; COSTAMAGNA, E.; RIDOLFI, L.; FIORE, S.; DEMICHELIS, F.; GALVÃO, A.; PISOEIRO, J.; RIZZO, A.; MASI, F. A review of nature-based solutions for greywater treatment: Applications, hydraulic design, and environmental benefits. Science of The Total Environment, v. 711, 2020. Disponível em: <https://doi.org/10.1016/j.scitotenv.2019.134731>. Acesso em: 07 abr. 2022.

CAMELO, S. M.; COURA, M. A.; RODRIGUES, A. C. L.; OLIVEIRA, R.; COSTA FILHO, F. C.; VIDAL, I. C. A. Modelagem da qualidade da água em sistemas de macrodrenagem de bacias urbanas. Engenharia Sanitaria Ambiental, v. 25, n. 6, p. 873-885, 2020. Disponível em: <https://doi.org/10.1590/S1413-415220202019033>. Acesso em: 07 abr. 2022.

CHENŸ, Y.; HAN, D. Water quality monitoring in smart city: A pilot project. Automation in Construction, v. 89, p. 307-316, 2018. Disponível em: <https://doi.org/10.1016/j.autcon.2018.02.008>. Acesso em: 08 abr. 2022.

DUAN, H-F.; PAN, B.; WANG, M.; CHEN, L.; ZHENG, F.; ZHANG, Y. State-of-the-art review on the transient flow modeling and utilization for urban water supply system (UWSS) management. Journal of Water Supply: Research and Technology-AQUA, v. 69, n. 8, p. 858-893, 2020. Disponível em: <https://doi.org/10.2166/aqua.2020.048>. Acesso em: 07 abr. 2022.

FABIANO, L.; VACCA, G.; DINARDO, G. Smart water grid: A smart methodology to detect leaks in water distribution networks, Measurement, v. 151, p. 1-7, 2020. Disponível em: <https://doi.org/10.1016/j.measurement.2019.107260>. Acesso em: 25 maio 2022.

GOUVEIA, R. L.; PEDROSA, I. V. Gestão das Políticas Governamentais para os Recursos Hídricos, Recife, Pernambuco, Brasil. Desenvolvimento Em Questão, v.13, n. 32, p.103–126, 2015. Disponível em: <https://doi.org/10.21527/2237-6453.2015.32.103-126>.Acesso em: 07 abr. 2022.

GIUDICIANNI, C.; HERRERA, M.; NARDO, A.; CARRAVETTA, A.; RAMOS, H. M.; ADEYEYE, K. Zero-net energy management for the monitoring and control of dynamically-partitioned smart water systems. Journal of Cleaner Production, v. 252, 2020. Disponível em: <https://doi.org/10.1016/j.jclepro.2019.119745>. Acesso em: 07 abr. 2022.

GONG, J.; LAMBERT, M.F.; STEPHENS, M.L.; CAZZOLATO, B.S.; ZHANG, C. Detection of Emerging through-Wall Cracks for Pipe Break Early Warning in Water Distribution Systems Using Permanent Acoustic Monitoring and Acoustic Wave Analysis. Water Resour. Manag, v. 34, p. 2419–2432, 2020. Disponível em: <https://doi.org/10.1007/s11269-020-02560-1>. Acesso em: 25 maio 2022.

GOONETILLEKE, A.; YIGITCANLAR, T.; AYOKO, G. A.; EGODAWATTA, P. Sustainable Urban Water Environment: Climate, Pollution, and Adaptation. International Journal of Information Systems and Social Change, v. 6, n. 3, p. 56-58, 2015. Disponível em: <https://www.igi-global.com/pdf.aspx?tid%3D128350%26ptid%3D118550%26ctid%3D17%26t%3Dsustainable+urban+water+environment%3A+climate%2C+pollution%2C+and+adaptation%26isxn%3D9781466676916>. Acesso em: 10 abr. 2022.

GRIGG, N. S. Smart water management: can it improve accessibility and affordability of water for everyone?. Water International, v. 45, n. 6, p. 608-620, 2020. Disponível em: <https://doi.org/10.1080/02508060.2020.1768738>. Acesso em: 07 abr. 2022.

HARRISON, C.; ECKMAN, B.; HAMILTON, R.; HARTSWICK, P.; KALAGNANAM, J.; PARASZCZAK, J.; WILLIAMS, P. Foundations for smarter cities, IBM J. Res. Disinvolvement, v. 54, n. 4, p. 1-16, 2010. Disponível em: <https://doi.org/10.1147/JRD.2010.2048257>. Acesso em: 25 maio 2022.

JAHANDIDEH-TEHRANI, M.; BOZORG-HADDAD, O.; LOÁICIGA, H. A. Application of particle swarm optimization to water management: an introduction and overview. Environmental Monitoring and Assessment, v. 192, n. 281, 2020. Disponível em: <https://doi.org/10.1007/s10661-020-8228-z>. Acesso em: 07 abr. 2022.

LACERDA, R.T. D. O.; ENSSLIN, L.; ENSSLIN, S.R. Uma análise bibliométrica da literatura sobre estratégia e avaliação de desempenho. Gestão & Produção, v. 19, n.1, p. 59-78, 2012. Disponível em: <https://www.scielo.br/j/gp/a/sKh5wfCCGv68fdRP8GStLXC/?lang=pt>. Acesso em: 20 abr. 2022.

MAHBUB, P.; GOONETILLEKE, A.; AYOKO, G. A.; EGODAWATTA, P.; YIGITCANLAR, T. Analysis of build-up of heavy metals and volatile organics on urban roads in gold coast, Australia. Water Science & Technol, v. 63, n. 9, p. 2077-2085, 2011. Disponível em: <https://doi.org/10.2166/wst.2011.151>. Acesso em: 10 abr. 2022.

MARTÍNEZ, R.; VELA, N.; AATIK, A.; MURRAY, E.; ROCHE, P.; NAVARRO, J. M.On the Use of an IoT Integrated System for Water Quality Monitoring and Management in Wastewater Treatment Plants. Water, v. 12, n. 4, 2020. Disponível em: <https://doi.org/10.3390/w12041096>. Acesso em: 07 abr. 2022.

MEKONNEN, M.; HOEKSTRA, A. Y. Four billion people facing severe water scarcity. Science Advances, v. 2, n. 2, p. 1-7, 2016. Disponível em: <https://www.science.org/doi/10.1126/sciadv.1500323>. Acesso em: 10 abr. 2022.

MOHANTY, S. P; CHOPPALI, U.; KOUGIANOS, E. Everything you wanted to know about smart cities: The Internet of things is the backbone. Computer Science, IEEE Consumer Electronics Magazine, v. 5, n. 3, p. 60-70, 2016. Disponível em: <https://doi.org/10.1109/MCE.2016.2556879>. Acesso em: 10 abr. 2022.

NAGAR, A.; PRADEEP, T. Clean water through nanotechnology: Needs, gaps and fulfillment. American Chemical Society ACS Nano, v. 14, n. 6, p. 6420-6435, 2020. Disponível em: <https://doi.org/10.1021/acsnano.9b01730>. Acesso em: 07 abr. 2022.

NIE, X.; FAN, T.; WANG, B.; LI, Z.; SHANKAR, A.; MANICKAM, A. Big Data analytics and IoT in Operation safety management in Under Water Management. Computer Communications, v. 154, p. 188-196, 2020. Disponível em: <https://doi.org/10.1016/j.comcom.2020.02.052>. Acesso em: 07 abr. 2022.

RAMOS, H. M.; MCNABOLA, A.; LÓPEZ-JIMÉNEZ, P. A.; PÉREZ-SÁNCHEZ, M. Smart water management towards future water sustainable networks. Water, v. 12, n. 1, p. 58, 2020. Disponível em: <https://doi.org/10.3390/w12010058>. Acesso em: 07 abr. 2022.

RUSSELL, S.; FIELDING, K. Water demand management research: a psychological perspective. Water Resources Research, v. 46, n. 5, p. 1-12, 2010. Disponível em: <https://doi.org/10.1029/2009WR008408>. Acesso em: 08 abr. 2022.

SARAJU, P.; MOHANTY, U.; KOUGIANOS, E. C.; Everything you wanted to know about smart cities: The Internet of Things is the backbone, IEEE Consumer Electronics Magazine, v. 5, n. 3, p. 60-70, 2016. Disponível em: <https://doi.org/10.1109/MCE.2016.2556879>. Acesso em: 25 maio 2022.

SAVIĆ, D.; VAMVAKERIDOU-LYROUDIA, L.; KAPELAN, Z. Smart Meters, Smart Water, Smart Societies: The iWIDGET Project. Procedia Engineering, v. 89, p. 1105-1112, 2014. Disponível em: <https://doi.org/10.1016/j.proeng.2014.11.231>. Acesso em: 08 abr. 2022.

SILVA, B. N.; KHAN, M.; HAN, K. Integration of Big Data analytics embedded smart city architecture with RESTful web of things for efficient service provision and energy management. Future Generation Computer Systems, v. 107, p. 975-987, 2020. Disponível em: <https://doi.org/10.1016/j.future.2017.06.024>. Acesso em: 07 abr. 2022.

SINGH, M.; AHMED, S. IoT based smart water management systems: A systematic review. Materials Today: Proceedings, v. 46, n. 11, p. 5211-5218, 2021. Disponível em: <https://doi.org/10.1016/j.matpr.2020.08.588>. Acesso em: 07 abr. 2022.

STEPHENS, M.; GONG, J.; ZHANG, C.; MARCHI, A.; DIX, L.; LAMBERT, M.F. Leak-Before-Break Main Failure Prevention for Water Distribution Pipes Using Acoustic Smart Water Technologies: Case Study in Adelaide. J. Water Resour. Plan. Manag, v. 146, n. 10, 2020. Disponível em: <https://doi.org/10.1061/(ASCE)WR.1943-5452.0001266>. Acesso em: 07 abr. 2022.

THE WORLD BANK. DataBank, Metadata Glossary, 2022. Disponível em: <https://databank.worldbank.org/metadataglossary/world-development-indicators/series/EN.URB.MCTY.TL.ZS>. Acesso em: 10 abr. 2022.

UDDIN, M. J.; JEONG, Y-K. Urban river pollution in Bangladesh during last 40 years: potential public health and ecological risk, present policy, and future prospects toward smart water management. Heliyon, v. 7, n. 2, 2021. Disponível em: <https://doi.org/10.1016/j.heliyon.2021.e06107>. Acesso em: 07 abr. 2022.

UMAMAHESWARI, S.; PRIYA, K. H.; KUMAR, S. A. Technologies used in smart city applications – An overview. 2021 International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation (ICAECA), p. 1-6, 2021. Disponível em: <https://doi.org/10.1109/ICAECA52838.2021.9675707>. Acesso em: 07 abr. 2022.

UN HABITAT. Global State of Metropolis 2020 - Population Data Booklet, 2020. Disponível em: <https://unhabitat.org/global-state-of-metropolis-2020-%E2%80%93-population-data-booklet>. Acesso em: 10 abr. 2022.

UNITED NATIONS. World Urbanization Prospects 2018: Highlights, 2019a. Disponível em: <https://population.un.org/wup/Publications/Files/WUP2018-Report.pdf>.Acesso em: 24 abr. 2022. Disponível em:https://www.sdg6data.org/?fbclid=IwAR3xWj1X9g8nwCNc7f2DD533gUJuiflhGa26mYjM0Y8Kc2_hPCEwy-k2qX4

UNITED NATIONS. Pnuma: Economizando água uma gota de cada vez, 2019b. Disponível em: <https://news.un.org/pt/story/2019/04/1666691>. Acesso em: 08 abr. 2022.

UNITED NATIONS. Sustainable Development Goal 6 on water and sanitation (SDG 6), 2020. Disponível em: <https://news.un.org/pt/story/2019/04/1666691#:~:text=A%20FAO%20estima%20que%2069,apenas%20uma%20gota%20no%20oceano>. Acesso em: 10 abr. 2022.

UNITED NATIONS. World urbanization prospects. the 2014 revision. New York: Department of Economic and Social Affairs, 2015. Disponível em: <https://population.un.org/wup/>. Acesso em: 08 abr. 2022.

VISSER, M.; BOOYSEN, M. J.; BRÜHL, J. M.; BERGER, K. J. Saving water at Cape Town schools by using smart metering and behavioral change. Water Resources and Economics, v. 34, 2021. Disponível em: <https://doi.org/10.1016/j.wre.2020.100175>. Acesso em: 10 abr. 2022.

WAHAB, N. S. N.; SEOW, T. W.; RADZUAN, I. S. M.; MOHAMED, S. A systematic literature review on the dimensions of smart cities. IOP Conference Series: Earth and Environmental Science, v. 498, 2020. Disponível em: <https://doi.org/10.1088/1755-1315/498/1/012087>. Acesso em: 07 abr. 2022.

WATER RESOURCES GROUP. 2017 Annual Report: Scaling Up for Impact. Water security partnerships for people, growth, and the environment. IFC, 2017. Disponível em: <https://www.2030wrg.org/wp-content/uploads/2018/03/2017-Annual-Report-2030-WRG.pdf>. Acesso em: 10 abr. 2022.

Downloads

Publicado

2023-04-02

Como Citar

Kunen, A., Ferreira, A. S., Pagani, R. N., & Santos, G. D. (2023). TECNOLOGIAS E SISTEMAS INTELIGENTES DE ÁGUA NO AMBIENTE URBANO: UMA ANÁLISE DA LITERATURA: TECHNOLOGIES AND INTELLIGENT WATER SYSTEMS IN THE URBAN ENVIRONMENT: A LITERATURE ANALYSIS . IX Sustentável, 9(2), 91–105. https://doi.org/10.29183/2447-3073.MIX2023.v9.n2.91-105