Lean Manufacturing in the context of Industry 4.0: a bibliometric study of world academic production published in journals indexed in the Scopus and Web of Science


  • Gabriel Nardes Giampietro Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, Campus Registro
  • Maria Caroline de Araujo Souza
  • Cássio Germano Lara de Souza
  • Weidy Luana Rocha Gervaz
  • Thales Botelho de Sousa https://orcid.org/0000-0002-5607-2527


Produção Enxuta, Indústria 4.0, Estudo Bibliométrico, Scopus, Web of Science.


Lean systems are used by industries that aim to improve their competitiveness through greater flexibility, lower costs, improvements in product quality and customer satisfaction. Industry 4.0 includes intelligent components and machines, integrated into a common digital network where flexible, powerful, and accessible microcontrollers are the main technology. Although Lean Manufacturing contrasts with some fundamentals of Industry 4.0, several studies have been carried out regarding the integration between these two areas. Through bibliometrics, this paper aims to investigate the advancement of scientific knowledge on the topic. For achieving this goal, documents published in journals indexed in the Scopus and Web of Science were analyzed. Among the results obtained, it is important to highlight the International Journal of Production Research, IFAC Papersonline and Procedia Manufacturing as the main sources; 41 countries published research on the topic, with Italy, Brazil, Germany, China, United States, United Kingdom, India and Spain among the most prolific; and, among the technologies and solutions related to the Industry 4.0, the Internet of Things and Cyber Physical Systems Ciber-Físicos are the most recurrent topics in the papers.

Author Biography

Gabriel Nardes Giampietro, Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, Campus Registro

Department of Industrial Engineering, IFSP Campus Registro.


Al-Hoorie, A. H., & Vitta, J. P. (2019). The seven sins of L2 research: A review of 30 journals’ statistical quality and their CiteScore, SJR, SNIP, JCR Impact Factors. Language Teaching Research, 23(6): 727-744. https://doi.org/10.1177/1362168818767191

Amjad, M. S., Rafique, M. Z., & Khan, M. A. (2021). Leveraging Optimized and Cleaner Production through Industry 4.0. Sustainable Production and Consumption, 26, 859-871. https://doi.org/10.1016/j.spc.2021.01.001

Brown, T., & Gutman, S. A. (2019). Impact factor, eigenfactor, article influence, scopus SNIP, and SCImage journal rank of occupational therapy journals. Scandinavian Journal of Occupational Therapy, 26(7): 475-483. https://doi.org/10.1080/11038128.2018.1473489

Buer, S-V., Strandhagen, J. O., & Chan, F. T. (2018). The link between Industry 4.0 and lean manufacturing: mapping current research and establishing a research agenda. International Journal of Production Research, 56(8): 2924-2940. https://doi.org/10.1080/00207543.2018.1442945

Cardoso, K. A. D. S. W., Costa, H. G., Silveira, H. M. C., Rodriguez, M. V. R. Y., & Dias, A. C. (2019). Análise dos aspectos que mais influenciam a publicação de artigos em periódicos de elevado impacto científico: revisão sistematizada. Sistemas & Gestão, 14(1): 13-27. https://doi.org/10.20985/1980-5160.2019.v14n1.1412

Carvalho, M. M., Fleury, A., & Lopes, A. P. (2013). An overview of the literature on technology roadmapping (TRM): Contributions and trends. Technological Forecasting and Social Change, 80(7): 1418-1437. https://doi.org/10.1016/j.techfore.2012.11.008

Clemente, D. H., Hsuan, J., & Carvalho, M. M. (2019). The intersection between business model and modularity: an overview of the literature. Brazilian Journal of Operations & Production Management, 16(3): 387-397. https://doi.org/10.14488/BJOPM.2019.v16.n3.a3

Ghazavi, R., Taheri, B., & Ashrafi-Rizi, H. (2019). Article Quality Indicator: Proposing a New Indicator for Measuring Article Quality in Scopus and Web of Science. Journal of Scientometric Research, 8(1): 9-17. https://doi.org/10.5530/jscires.8.1.2

Gupta, S., & Müller-Birn, C. (2018). A study of e-research and its relation with research data life cycle: A literature perspective. Benchmarking, 25(6): 1656-1680. https://doi.org/10.1108/BIJ-02-2017-0030

Homrich, A. S., Galvão, G., Abadia, L. G., & Carvalho, M. M. (2018). The circular economy umbrella: Trends and gaps on integrating pathways. Journal of Cleaner Production, 175, 525-543. https://doi.org/10.1016/j.jclepro.2017.11.064

Jovanović, M., Lalić, B., Mas, A., & Mesquida, A-L. (2015). The agile approach in industrial and software engineering project management. Journal of Applied Engineering Science, 13(4): 213-216. https://doi.org/10.5937/jaes13-9577

Kamble, S., Gunasekaran, A., & Dhone, N. C. (2020). Industry 4.0 and lean manufacturing practices for sustainable organisational performance in Indian manufacturing companies. International Journal of Production Research, 58(5): 1319-1337. https://doi.org/10.1080/00207543.2019.1630772

Kolberg, D., Knobloch, J., & Zühlke, D. (2017). Towards a lean automation interface for workstations. International Journal of Production Research, 55(10): 2845-2856. https://doi.org/10.1080/00207543.2016.1223384

Lin, W-Y. C. (2017). The performance of Asian S&T journals in international citation indicators. Learned Publishing, 30(3): 193-204. https://doi.org/10.1002/leap.1100

Lyu, Z., Lin, P., Guo, D., & Huang, G. Q. (2020). Towards zero-warehousing smart manufacturing from zero-inventory just-in-time production. Robotics and Computer-Integrated Manufacturing, 64, 101932. https://doi.org/10.1016/j.rcim.2020.101932

Martínez-López, F. J., Merigó, J. M., Gázquez-Abad, J. C., & Ruiz-Real, J. L. (2020). Industrial marketing management: Bibliometric overview since its foundation. Industrial Marketing Management, 84, 19-38. https://doi.org/10.1016/j.indmarman.2019.07.014

Mogoş, R-I., Bodea, C-N., Dascălu, M-I., Safonkina, O., Lazarou, E., Trifan, E-L., & Nemoianu, I. V. (2018). Technology enhanced learning for industry 4.0 engineering education. Revue Roumaine des Sciences Techniques – Série Électrotechnique et Énergétique, 63(4): 429-435.

Nadae, J. D., & Carvalho, M. M. (2019). Integrated management systems as a driver for sustainability: the review and analysis of the literature and the proposition of the conceptual framework. Production, 29, e20180048. https://doi.org/10.1590/0103-6513.20180048

Paes, L. A. B., Bezerra, B. S., Deus, R. M., Jugend, D., & Battistelle, R. A. G. (2019). Organic solid waste management in a circular economy perspective – A systematic review and SWOT analysis. Journal of Cleaner Production, 239, 118086. https://doi.org/10.1016/j.jclepro.2019.118086

Pagliosa, M., Tortorella, G., & Ferreira, J. C. E. (2020). Industry 4.0 and lean manufacturing: a systematic literature review and future research directions. Journal of Manufacturing Technology Management, In Press. https://doi.org/10.1108/JMTM-12-2018-0446

Parizotto, L. A., Tonso, A., & Carvalho, M. M. (2020). The challenges of project management in small and medium-sized enterprises: a literature review based on bibliometric software and content analysis. Gestão & Produção, 27(1): e3768. https://doi.org/10.1590/0104-530x3768-20

Rahman, M. S. B. A., Mohamad, E., & Rahman, A. A. B. A. (2021). Development of IoT – enabled data analytics enhance decision support system for lean manufacturing process improvement. Concurrent Engineering, In Press. https://doi.org/10.1177/1063293X20987911

Rosin, F., Forget, P., Lamouri, S., & Pellerin, R. (2020). Impacts of Industry 4.0 technologies on Lean principles. International Journal of Production Research, 58(6): 1644-1661. https://doi.org/10.1080/00207543.2019.1672902

Rossini, M., Costa, F., Tortorella, G. L., & Portioli-Staudacher, A. (2019). The interrelation between Industry 4.0 and lean production: an empirical study on European manufacturers. International Journal of Advanced Manufacturing Technology, 102(9): 3963-3976. https://doi.org/10.1007/s00170-019-03441-7

Tortorella, G. L., Giglio, R., & Van Dun, D. H. (2019). Industry 4.0 adoption as a moderator of the impact of lean production practices on operational performance improvement. International Journal of Operations & Production Management, 36(6-8): 860-886. https://doi.org/10.1108/IJOPM-01-2019-0005

Tortorella, G. L., Narayanamurthy, G., & Thurer, M. (2021). Identifying pathways to a high-performing lean automation implementation: An empirical study in the manufacturing industry. International Journal of Production Economics, 231, 107918. https://doi.org/10.1016/j.ijpe.2020.107918

Tortorella, G. L., Pradhan, N., Anda, E. M., Martinez, S. T., Sawhney, R., & Kumar, M. (2020a). Designing lean value streams in the fourth industrial revolution era: proposition of technology-integrated guidelines. International Journal of Production Research, 58(16), 5020-5033. https://doi.org/10.1080/00207543.2020.1743893

Tortorella, G. L., Sawhney, R., Jurburg, D., Paula, I. C., Tlapa, D., & Thurer, M. (2020b). Towards the proposition of a Lean Automation framework. Journal of Manufacturing Technology Management, In Press. https://doi.org/10.1108/JMTM-01-2019-0032

Tortorella, G. L., & Fettermann, D. (2018). Implementation of Industry 4.0 and lean production in Brazilian manufacturing companies. International Journal of Production Research, 56(8): 2975-2987. https://doi.org/10.1080/00207543.2017.1391420

Vanti, N. A. P. (2002). Da bibliometria à webometria: uma exploração conceitual dos mecanismos utilizados para medir o registro da informação e a difusão do conhecimento. Ciência da Informação, 31(2): 369-379. https://doi.org/10.1590/S0100-19652002000200016

Vázquez, Á. D., Vázquez-Cano, E., Montoro, M. R. B., & Meneses, E. L. (2019). Análisis bibliométrico del impacto de la investigación educativa en diversidad funcional y competencia digital: Web of Science y Scopus. Aula Abierta, 48(2): 147-156. https://doi.org/10.17811/rifie.48.2.2019.147-156

Vu, T. L. A. (2018). Building CDIO approach training programmes against challenges of industrial revolution 4.0 for engineering and technology development. International Journal of Engineering Research and Technology, 11(7): 1129-1148.

Zhang, K., Qu, T., Zhou, D., Thürer, M., Liu, Y., Nie, D., Li, C., & Huang, G. Q. (2019). IoT-enabled dynamic lean control mechanism for typical production systems. Journal of Ambient Intelligence and Humanized Computing, 10(3): 1009-1023. https://doi.org/10.1007/s12652-018-1012-z