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ABSTRACT 
This systematic review investigates recent advances in wood polymer composites (WPCs), focusing on their 
composition, processing methods, and physical-mechanical performance for potential structural and sustainable 
construction applications. Using the adapted Systematic Search Flow methodology, the study analyzed the 
composition, manufacturing strategies, and physical-mechanical performance of 283 distinct WPC formulations 
reported in 134 research articles. Extrusion, whether applied independently or in combination with other techniques, 
emerged as the dominant process for thermoplastic-based WPCs, enabling continuous production and high 
throughput. Polypropylene (PP) and high-density polyethylene (HDPE) were the most common matrices, typically 
reinforced with lignocellulosic fillers that enhance stiffness and strength, although often at the cost of increased 
water absorption, a drawback effectively mitigated by compatibilizing agents. Statistical analyses of tensile, flexural, 
and water absorption data, presented through detailed graphical representations, serve as a key strength of this 
work, functioning as powerful visual tools to highlight trends, compare formulations, and facilitate the interpretation 
of results. The review underscores the versatility of WPCs in addressing environmental challenges such as plastic 
waste and deforestation, while also highlighting critical gaps in long-term durability, the effects of recycling cycles, 
and the harmonization of performance benchmarks in international standards. The study concludes that WPCs, 
when optimally formulated and processed, offer high potential for applications such as decking, facade panels, 
and modular structural elements, and that aligning future developments with sustainability principles and global 
standardization will be key to expanding their adoption in engineering and construction sectors.
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RESUMO
Esta revisão sistemática apresenta os avanços recentes em compósitos madeira-polímero (Wood Polymer Composites - 
WPCs), com ênfase em sua composição, métodos de processamento e desempenho físico-mecânico, visando aplicações 
estruturais e sustentáveis na construção civil. A partir da metodologia Systematic Search Flow adaptada, foram analisadas 
283 formulações distintas de WPCs descritas em 134 artigos científicos. A extrusão, utilizada de forma isolada ou combinada 
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com outras técnicas, destacou-se como o principal processo de produção para compósitos termoplásticos, viabilizando 
manufatura contínua e em larga escala. Entre as matrizes mais empregadas, o polipropileno (PP) e o polietileno de 
alta densidade (PEAD) foram predominantes, geralmente reforçados com cargas lignocelulósicas, que aumentam 
rigidez e resistência, ainda que elevem a absorção de água, aspecto frequentemente minimizado pelo uso de agentes 
compatibilizantes. A análise estatística de dados de tração, flexão e absorção de água, organizada em representações 
gráficas detalhadas, constitui um dos pontos fortes desta revisão, funcionando como ferramenta visual eficaz para 
destacar tendências, comparar formulações e interpretar resultados. Os achados evidenciam a versatilidade dos WPCs no 
enfrentamento de desafios ambientais, como o acúmulo de resíduos plásticos e o desmatamento. Contudo, permanecem 
lacunas relacionadas à durabilidade em longo prazo, aos efeitos de múltiplos ciclos de reciclagem e à necessidade de 
harmonização de critérios de desempenho em normas internacionais. Conclui-se que, quando formulados e processados 
de maneira otimizada, os WPCs apresentam elevado potencial para aplicações como decks, painéis de fachada e 
elementos estruturais modulares. O alinhamento dos futuros desenvolvimentos aos princípios da sustentabilidade e à 
padronização global será determinante para ampliar sua adoção nos setores de engenharia e construção.

PALAVRAS-CHAVE
Compósitos madeira-polímero; Propriedades físico-mecânicas; Processos de produção; Sustentabilidade.

RESUMEN
Esta revisión sistemática examina los avances recientes en los compuestos de madera y polímero (Wood Polymer Composites 

- WPCs), con énfasis en su composición, métodos de procesamiento y desempeño físico-mecánico para posibles aplicaciones 
estructurales y de construcción sostenible. Mediante la metodología adaptada Systematic Search Flow, el estudio analizó la 
composición, las estrategias de fabricación y el desempeño físico-mecánico de 283 formulaciones distintas de WPC reportadas 
en 134 artículos de investigación. La extrusión, empleada de forma independiente o en combinación con otras técnicas, se 
consolidó como el proceso predominante para los WPC basados en termoplásticos, al permitir producción continua y alta 
eficiencia. El polipropileno (PP) y el polietileno de alta densidad (PEAD) fueron las matrices más utilizadas, comúnmente 
reforzadas con cargas lignocelulósicas que mejoran la rigidez y la resistencia, aunque con el inconveniente de un incremento 
en la absorción de agua, limitación que puede mitigarse de manera efectiva mediante agentes compatibilizantes. Los análisis 
estadísticos de datos de tracción, flexión y absorción de agua, presentados a través de representaciones gráficas detalladas, 
constituyen una de las principales fortalezas de este trabajo, al servir como herramientas visuales para destacar tendencias, 
comparar formulaciones y facilitar la interpretación de resultados. La revisión resalta la versatilidad de los WPC para afrontar 
desafíos ambientales como los residuos plásticos y la deforestación, al tiempo que señala vacíos críticos relacionados con 
la durabilidad a largo plazo, los efectos de los ciclos de reciclaje y la armonización de los parámetros de desempeño en 
normas internacionales. Se concluye que los WPC, cuando son formulados y procesados de manera óptima, poseen un alto 
potencial para aplicaciones como tarimas, paneles de fachada y elementos estructurales modulares; y que la alineación de 
futuros desarrollos con los principios de sostenibilidad y la estandarización global será clave para ampliar su adopción en los 
sectores de la ingeniería y la construcción.

PALABRAS CLAVE
Compuestos de madera y polímero; Propiedades físico-mecánicas; Procesos de producción; Sostenibilidad.
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1. INTRODUCTION 

The composite structures sector faces numerous 
challenges and opportunities in a rapidly changing 
business environment, with increasing global pressures 
to adopt sustainable practices [1,2]. Investors and 
consumers are paying closer attention to companies’ 
ESG (Environmental, Social and Governance) practices 
[3], driving demand for materials and processes that 
minimize environmental impact and align with the 
principles of the circular economy.

In this context, Wood Polymer Composites (WPC) 
emerge as a promising sustainable alternative. They 
combine a polymeric matrix with a reinforcing 
filler, generally wood waste, enabling the reuse 
of polymeric and lignocellulosic residues, thereby 
reducing environmental liabilities and lessening 
the demand for natural resources. Beyond their 
environmental appeal, WPC offers significant 
technological advantages: the polymeric matrix 
distributes mechanical stresses and protects the filler 

from damage, while the filler enhances the material’s 
strength and stiffness [4,5].

Their resistance to moisture, fungi, pests, and mold 
makes WPC suitable for external applications where 
natural wood would be unsuitable [6,7]. Consequently, 
they find applications in construction elements such as 
profiles, beams, decks, and panels [8-10], as well as in 
the automotive industry for components like interior 
panels and vehicle doors [11]. The performance of these 
products depends on an integrated design approach 
that considers both optimal material selection and 
manufacturing parameters.

Figure 1 presents a chronological overview of 
investigations into WPC, as detailed in the review by 
Kieling, Santana, and Dos Santos [12]. While WPC is not 
a recent technological innovation, the field continues to 
evolve, with research focusing on expanding applications, 
incorporating new waste streams, improving production 
methods, and embedding circular economy practices in 
manufacturing – efforts that collectively strengthen the 
benchmarking of these materials.

Figure 1: Historical evolution of the Wood Polymer Composite. 

Source: The Authors. Adapted from Kieling et al. [12]. 

Proper WPC design is fundamental to achieving 
desired performance. This includes selecting 
appropriate polymers and fillers, often from recyclable 
sources [11,13,14]. Such a multifaceted approach 
not only advances material recycling and waste 

reduction but also supports several United Nations 
(UN) Sustainable Development Goals (SDGs), including 
SDG 12 (Responsible Consumption and Production), 
SDG 14 (Life Below Water), and SDG 15 (Life on Land). 
Furthermore, fostering cross-sector collaboration to 
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develop sustainable solutions such as WPC directly 
contributes to SDG 17 (Partnerships for the Goals) [2].

The existing literature often addresses WPC through 
specific lenses, focusing separately on matrices [15], types 
of fillers [16], production methods [17], compatibilizing 
agents [18], or material properties [19]. In contrast, this 
study offers an integrated perspective, employing 
graphical tools to clarify the complexities involved and 
conducting in-depth analyses of how these variables 
influence the physical-mechanical behavior of WPC. By 
exploring data distributions and identifying outliers, this 
work provides a comprehensive and updated view that 
can help expand the structural applications of WPC in 
strategic industrial sectors.

2. METHODOLOGY

To develop a broad understanding of the characteristics, 
properties, and processing methods of WPC, a 
comprehensive literature review was conducted using the 
adapted Systematic Search Flow (SSF) method [20], which 
structures the search process to minimize researcher bias. 
The research protocol (Figure 2) comprised four sequential 
stages. Searches were performed in Scopus® and Web of 
Science®, with the most recent search completed in August 
2025, using the keywords "wood polymer composite" and 
propert* with Boolean operators. The scope was restricted 
to journal articles published between 2016 and 2023, 
without language limitations. Newspaper articles, book 
chapters, and other sources were excluded, as evidence 
from previous studies suggests they often add complexity 
without offering substantial contributions [21,22].

Figure 2: Steps of the literature review process using the adapted SSF method [20].

Source: The Authors.

From the initial 389 records retrieved, 23 were 
inaccessible and 120 were duplicates, leaving 246 
unique articles. Screening excluded 112 papers for 
being literature reviews or for not addressing WPC 
materials, processing techniques, or properties. This 
resulted in a final set of 134 relevant studies. Thus, 

the final set comprised only original research articles 
reporting experimental data on WPC materials, 
processing, or properties. 

Notably, these 134 articles encompassed 283 
distinct WPC, since many studies examined multiple 
composite variations. In this context, a “distinct” WPC 
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was defined as one differing in the raw materials 
used or in the production methods, even if reported 
within the same study. This approach ensured that 
each variation was evaluated individually, rather than 
grouping results by article.

3. POLYMERIC MATRICES

The results of the literature review reveal a clear 
predominance of thermoplastic polymer matrices in 
the WPC investigated, particularly polypropylene (PP) 

(37.8%) and high-density polyethylene (HDPE) (18.4%) 
[23-39], compared to thermosetting polymers such 
as polyester (PES), polyurethane (PU), and epoxy resin 
(ER), which represent less than 2% of the reviewed 
cases. Thermoplastics are favored for their low cost, 
ease of processing and recycling due to their ability 
to be remelted, and chemical resistance from their 
non-crosslinked polymer chains [40]. Additionally, 
thermoplastics, especially PP and PE, process at relatively 
low temperatures (below 200 °C), which helps prevent 
degradation of wood-based fillers [41,42]. These results 
are summarized in Figure 3.

Figure 3: Steps of the literature review process using the adapted SSF method [20].

Source: The Authors.

Among thermoplastics, notable matrices also include 
blends of PP with polyethylene (PE) (5.3%) [43,44], 
polyvinyl chloride (PVC) (4.6%) [45-48], and polystyrene 
(PS) (2.5%) [49,50]. PVC offers greater compatibility with 
lignocellulosic materials due to its hydrophilic molecular 
structure and the presence of chlorine, which acts as a 
flame retardant [51]. However, PVC can release dioxins 
during manufacturing, posing environmental concerns 
for the WPC industry [41].

Biodegradable polymers represent 13.1% of the 
identified WPC, enabling the production of fully 
biodegradable composites when both the filler and the 
matrix are biodegradable. Examples include polylactic 

acid (PLA) [52-54], poly(butylene succinate) (PBS) [55], 
polycaprolactone (PCL) [56], and modified starches [57]. 
Growing concerns over pollution caused by commodity 
plastics have driven a shift toward biodegradable 
alternatives. Bio-based plastics derived from biomass, 
when combined with renewable fillers and circular raw 
resources such as wood, have the potential to further 
boost the WPC industry. Conventional WPC contribute 
to microplastic pollution and often end up in landfills, 
leading to long-term environmental impacts. In contrast, 
bio-based plastics with high filler content can be relatively 
low-cost, exhibit excellent mechanical properties, and 
reduce environmental impact [55].
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4. FILLERS

The literature review highlights the predominant use of 
natural wood particles, either as flour or fibers, as WPC 
fillers, accounting for 81% of cases, as shown in Figure 
4. Incorporating wood fibers into the polymer matrix 
offers multiple advantages, including lower processing 
temperatures, reduced molding cycles, lower density, 
and low abrasiveness [58]. Moreover, wood is a renewable 
and biodegradable resource, enhancing the sustainability 
of WPCs [59]. These benefits extend to WPC structural 

elements, reinforcing their potential for sustainable 
construction applications.

Among these composites, 54% use a single wood 
species as filler, while 5% employ two or more species 
simultaneously [60-65]. Additionally, 4% of studies 
explore combining wood with inorganic reinforcements 
such as chalk [47], glass [66], aramid [67], and printed 
circuit boards [68]. Other fillers include fiber or particle 
panels (4%), microcrystalline cellulose (2%) [55], and 
reprocessed WPC particles (1%) [69].

Figure 4: Types of fillers most used in WPC.

Source: The Authors.

Alternative lignocellulosic fillers represent 16% of 
WPC compositions and include grasses, cereal residues, 
and fruit byproducts. Examples are bamboo [70, 71], 
brown coals [72], rice husk [73, 74], rapeseed straw 
[75], tangerine peel [76], oat husk [77], wheat bran [78], 
sunflower husk [79], corn straw and cob [80, 81], palm 
leaves [82], olive pits [83], coffee husks [84], among 
others. Some studies investigate mixed fillers combining 
wood and cereal residues, such as coffee husks with 
brewery grains [85] or coconut shell [86]. Notably, 13% 
of WPC with wood fillers do not specify the species or 
origin of the wood [87].

Among those specifying wood species, the most 
common are Pine (27.0%), Poplar and Fir (16.7% each) 
and Beech (15.5%) as presented in Figure 5 [23, 68, 88-
97]. Less frequently used species (24.1%) include Neem, 
Flamboyant, Eucalyptus, Birch, Teak, Willow, Sal Tree and 
Oak, among others [35, 60, 62,98-103], as well as fruit trees 
such as Olive [104], Black Cherry [105], and Jackfruit [106].

It is important to note that all natural wood fillers 

contain cellulose, hemicellulose, and lignin. Cellulose 
enhances certain mechanical properties of WPC, such 
as reduced thermal expansion/ contraction. Lignin, 
however, can weaken WPC by reducing density and 
accelerating discoloration upon outdoor exposure. 
Hemicellulose is susceptible to decomposition at the 
polymer matrix’s melting temperature, producing 
acetic acid that can severely corrode processing 
equipment [107]. Understanding these components is 
essential for optimizing the behavior and properties 
of natural fiber-reinforced composites, particularly for 
structural applications.
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5. COMPATIBILIZING AGENTS

Although wood and other lignocellulosic fillers are 
widely used in WPCs, their hydrophilic nature can cause 
incompatibility with hydrophobic polymer matrices, 
hindering interfacial adhesion and reducing load transfer 
efficiency [108]. To address this issue, compatibilizing 
agents are incorporated in 64.3% of the analyzed 
cases (Figure 6), acting as chemical intermediaries that 
enhance matrix-filler interaction, resulting in more 
homogeneous and stable composites [109]. Maleic 
anhydride (MA) is the most commonly used agent either 
in pure form (7.1%) [24,110,111] or grafted onto PP (MAPP) 

(5.3%) [57,104,112-114] and PE (MAPE) (4.6%) [115-119]. 
Its mechanism involves reacting with hydroxyl groups 
in wood fibers, creating chemical bonds or stronger 
interactions with the polymer, thereby reducing defects 
such as porosity and micro-voids [120]. In some cases, 
adding up to 4 wt% MAPP can increase the flexural 
modulus of rupture and modulus of elasticity by up to 
12.7% and 39.1%, respectively, in composites based on 
PP, rubber, and rubberwood sawdust [112]. However, 
not all compatibilizers yield improvements, for instance, 
ethylene-1-butene weakened the strength of PP 
composites containing ground tire rubber and pine 
flour [121].

Figure 5: Types of fillers most used in WPC.

Source: The Authors.

Figure 6: Compatibilizing agents used in the production of WPC.

Source: The Authors.
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Despite these benefits, 35.7% of WPCs are produced 
without compatibilizers [88,122-125], offering 
simpler formulations and lower costs, although 
potentially at the expense of mechanical and thermal 
performance. Beyond MA, MAPP and MAPE, alternative 
compatibilizers are also employed, such as functionally 
modified polymers (9.9%) [44,94] and isocyanates 
(3.5%) [55,56]. Functionally modified polymers 
incorporate specific groups that enhance adhesion, 
wettability, or reactivity [126-128], while isocyanates 
improve phase compatibility to levels equal to or 
exceeding those of anhydrides [56]. However, due to 
their toxicity, isocyanates must be used cautiously, 
with environmental and safety considerations being 
essential for the development of more sustainable 
WPCs [18].

6. PROCESSING METHODS

Extrusion is the predominant WPC processing method, 
used in 39.9% of studies (Figure 7) [30, 32,44,80,129-
134]. It ensures uniform component mixing, melting and 
plastifying materials into profiles, boards, or other shapes, 
promoting strong organic-inorganic adhesion and 
optimizing composite properties for diverse applications. 
Compression molding (21.6%) [135-142] and injection 
molding (13.1%) [31, 100, 143-147] are also relevant. In 
compression molding, the matrix and filler are pressed 
in a mold, which is generally heated, while in injection 
molding, the molten material is injected into a mold [41]. 
Compression molding is efficient at lab scale but often 
produces higher porosity than extrusion or injection, 
which yield denser, less absorbent composites [61].

Figure 7: Main processing methods used in research involving WPC.

Source: The Authors.

Hybrid methods combine extrusion with injection 
(12.7%) [148-150] or compression molding (3.9%) [112,119], 
where extrusion generally serves as the mixing stage 
and the subsequent method defines the final geometry 
and properties [84,96,151,152]. Extrusion can also supply 
filaments for 3D printing, which are remelted and 
deposited layer by layer [53,54].

Hand lay-up, despite being labor-intensive, operator-
dependent, and less consistent, remains popular for 
its low cost and versatility [102,103, 153,154]. Fibers are 
manually arranged and resin applied by hand [155], mainly 
for thermoset matrices (epoxy, polyester, vinyl ester) 
[156], whose long curing times enable handling and yield 
dimensionally stable, chemically, and thermally resistant 

composites [157]. Automation has been proposed to 
improve repeatability [158].

Some studies adopt a structural impregnation 
approach, modifying entire wood pieces instead of 
particulate fillers [159]. After delignification to increase 
porosity while preserving cell walls, polymers such as 
PMMA [160] or PVA [161] are infiltrated, filling cell lumens 
without defects and achieving tensile strengths up to 
165.3 MPa [160], far above those of conventional WPCs (up 
to 60 MPa). Other works present prototype processing 
equipment, such as a rotational molding system with a 
360° rotating aluminum mold and oscillating oven for 
uniform material distribution [162]. In all methods, precise 
control of temperature, pressure, and speed is critical, as 
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inadequate conditions cause poor filler dispersion, voids, 
and reduced mechanical performance [41].

7. MECHANICAL AND 
PHYSICAL PROPERTIES

Various mechanical and physical properties are 
evaluated in research involving WPC. Among the 
mechanical properties, the systematic review showed 
that tensile and flexural strength tests are the most 
frequently reported, applied to 75% and 48% of 
the composites reviewed, respectively. Regarding 
physical properties, water absorption was the most 
common, assessed in nearly 30% of the studies, with 
a 24-hour immersion period adopted in 21% of these 
cases. Other tests were reported for a smaller subset of 
composites (less than 30%), including impact strength, 
shear strength, wear resistance, weathering, color 
change, viscosity, hardness, and thickness swelling 
[77,94,95,100,116,144,141].

Statistical analysis of the compiled dataset, 
summarized in the boxplots of Figure 8, reveals distinct 
distributions for tensile and flexural strength among 
the evaluated WPCs. Tensile strength values (n=215) 
range from 1.56 MPa to 59.20 MPa, with a median 
of 23.63 MPa and a mean of 24.88 MPa, indicating a 
relatively symmetric distribution around the central 
tendency, though with two extreme outliers (152.08 
MPa and 255.71 MPa) far exceeding the upper quartile 
(32 MPa). In contrast, flexural strength (n=135) spans 
a broader range, from 3.53 MPa to 105.39 MPa, with 
higher central values, a median of 37 MPa and a 
mean of 39.29 MPa, and no statistical outliers. Overall, 
flexural strength not only exhibits higher absolute 
values compared to tensile strength but also a wider 
interquartile range (19.50-55.30 MPa vs. 12.58-32 MPa), 
reflecting its generally higher magnitude in WPCs, since 
flexural loading induces a combination of tensile and 
compressive stresses, allowing the material to sustain 
higher apparent strengths than in pure tension.

Figure 8: Results of composites subjected to tensile and flexural strength tests.

Source: The Authors.

One of the main challenges in developing WPCs is 
achieving efficient interfaces between the polymer matrix 
and lignocellulosic fillers, thereby maximizing stress 
transfer and, consequently, mechanical properties. For 
this reason, a large share of studies investigates the effect 
of compatibilizing agents, especially MA, on mechanical 
performance, with emphasis on tensile strength. The 
addition of moderate amounts of MA or MA-functionalized 
polymers promotes chemical compatibilization, enhancing 
macromolecular interpenetration, homogeneous particle 
dispersion, and improved interfacial adhesion [57].

Experimental results confirm this effect. A PP 
composite reinforced with bamboo fiber containing 3% 
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with MDF (39.31 MPa) outperformed those with hornbeam 
(37.99 MPa) and pine (31.79 MPa) [166]. The highest flexural 
strength, 105.39 MPa, was achieved by the same WPC that 
was an outlier in tensile strength, produced via a single-
stage hot molding process using PVC and poplar [165].

Chemically pretreated wood fillers also yielded high 
flexural strengths, even in composites manufactured 
by hand lay-up. A WPC reinforced with pine and sal 
tree, pretreated with silane, reached an average flexural 
strength of 94 MPa, while a similar composite with alkaline 
pretreatment achieved 84 MPa [103]. Additionally, a WPC 
based on epoxidized soybean oil resin, incorporating 
treated wood flour and MA, recorded 72.49 MPa [138].

At the other end of the spectrum, the lowest flexural 
strengths were found in a PU-based WPC reinforced 
with palm leaf fiber and palm oil (3.53 MPa) produced 
by extrusion [167], and in an epoxy resin-pine composite 
(5.36 MPa) made by hand lay-up [168]. Similarly, a PES-
based WPC with teak and additives for catalysis and curing 
achieved 6.50 MPa, which increased to 7.11 MPa with the 
addition of gum resin [102]. These findings highlight the 
considerable potential of WPCs in flexural applications, 
particularly for thermoplastic matrices reinforced with 
chemically pretreated wood fillers.

The mechanical performance of WPCs, as observed 
in both tensile and flexural tests, is strongly influenced 
by matrix-filler interactions, filler type, compatibilizers, 
and processing methods. These same factors also 
affect physical properties such as water absorption. 
High filler-matrix adhesion and densely consolidated 
microstructures, as seen in composites with chemically 
treated wood or processed via innovative methods, 
enhance strength while limiting water uptake, mitigating 
dimensional instability and potential degradation.

Water absorption directly influences the long-term 
performance of WPCs. Excessive water uptake can cause 
swelling and deformation of the polymer matrix and wood 
fibers, weakening interfacial bonds and reducing mechanical 
properties such as tensile, flexural, and impact strength 
[169]. Therefore, assessing water absorption is essential for 
understanding the overall behavior and durability of WPCs.

Statistical analysis of the water absorption values after 24 
hours (n=59), summarized in the boxplot of Figure 9, shows a 
markedly skewed distribution. Absorption rates range from 
0.17% to 17.5%, with a median of 2.63% and a mean of 6.99%, 
indicating that most composites exhibit relatively low water 
uptake, but a subset presents substantially higher values. 
The interquartile range (0.78-8.0%) reflects considerable 
variability among the central 50% of the dataset, while 

MA exhibited a tensile strength of 15.83 MPa, compared 
to 5.43 MPa for the same material without compatibilizer 
[70]. Similarly, PP-based WPCs with MA and residual MDF 
or MDP fillers, produced by extrusion, reached strengths 
above 42.00 MPa [69,113,130], while PP composites with 
beech and ionic liquid (47 MPa) [96], and PP with MDP and 
MA (59.20 MPa, the maximum value within the boxplot 
limits) [69] also showed high performance. 

On the other hand, composites without compatibilizers 
generally rank among the lowest in tensile strength. 
Examples include PET, HDPE and rubber with oak (1.56 
MPa) [99] and PP with acacia (4.55 MPa) [163], both 
compression molded; PP with beech (2.89 MPa) and PP 
with birch (3.16 MPa) by injection molding [100]; and PE 
with fir by extrusion (4.91 MPa) [93]. Nevertheless, there are 
notable exceptions: PP and melia dubia WPCs, produced 
by extrusion and injection, reached 53.70 MPa [152], and 
PP with fir flour achieved 43.26 MPa [68], even surpassing 
certain formulations with compatibilizers, such as PP and 
PE with unspecified wood flour and MA (6.81 MPa) [164], 
or PP with poplar and azodicarbonamide (6.91 MPa) [43].

The two outliers observed in the boxplot are associated 
with non-conventional manufacturing processes. In the 
first case, the process consists of interleaving PVC powder 
between wood veneers and PVC layers aligned with the 
fibers, followed by single-step hot molding. This approach 
promotes cell collapse in the wood and chemical bonding 
to PVC, producing a dense, interconnected structure with 
high density and strong bonding, resulting in a mechanical 
strength of 255.71 MPa, exceeding by over tenfold the 
average strength of the analyzed WPCs [165]. In the second 
case, a wood/PMMA composite achieved 165 MPa using 
delignified linden wood with preserved cellular structure and 
complete PMMA impregnation, avoiding microstructural 
defects and leading to outstanding performance [160]. 
These results reinforce that, while compatibilizers play an 
important role, careful selection of raw materials and the 
adoption of innovative manufacturing processes can exert 
an even greater impact on the mechanical strength of WPCs.

In terms of flexural strength, WPCs produced by 
extrusion and incorporating compatibilizing agents 
showed the highest performance. Composites with a PP 
matrix and MDF or MDP fillers, combined with MA, reached 
values exceeding 70 MPa [69,113,130]. MDF also stood 
out in a study assessing the influence of different fillers: 
three composites, produced with the same matrix (PP), 
processing method (extrusion followed by compression), 
and compatibilizer (MAPP), achieved distinct flexural 
strengths depending on the filler type. The formulation 
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Processing route plays a central role in this variability. 
Although some extruded composites have shown 
absorption levels below the second quartile (2.63%) 
[47,77,115], extrusion can adversely affect moisture 
resistance. A comparative study on composites with 
identical formulations demonstrated that extruded 
specimens absorbed more water than those produced 
by compression or injection molding [170]. The superior 
performance of injection-molded composites was 
attributed to the formation of a polymer-rich surface 
layer under high processing temperatures and pressures, 
providing a more effective barrier against moisture. 
Compression molding, however, can surpass injection 
molding in WPC production due to its lower shear stresses 
and more controlled temperatures, which better preserve 
fiber integrity, leading to improved tensile and flexural 
properties, an effect that can be enhanced through 
compatibilizer addition [157]. Longer exposure to pressure 
and heat during compression molding also contributes to 
reduced water ingress compared to extrusion.

Within compression molding, processing temperature 
is particularly influential. The most extreme outlier in the 
boxplot (51.07%) corresponds to a composite based on 
PS where absorption decreased dramatically as pressing 
temperature increased, from 51.07% at 413 K (~140 °C) 
to only 1.33% at 493 K (~220 °C) [49]. This improvement 
was further supported by filler refinement: composites 
with sifted sawdust absorbed less water than those with 
unsifted sawdust, a result attributed to denser packing, 
lower void volume, and reduced porosity. Additionally, the 
incorporation of additives such as calcium carbonate (CaCO₃) 
can further reduce water absorption in WPCs, particularly in 
composites based on recycled PP. For instance, a formulation 
containing 70% wood flour and 30% recycled PP showed a 
reduction in water uptake from 4% to 2% after 24 hours of 
immersion, which could be further decreased to 1.5% with 
the addition of 7% CaCO₃ by weight, effectively minimizing 
the influence of the PP/wood ratio [171].

Composition also plays a decisive role, as illustrated 
by two other extreme outliers (48.6% and 31.6%), both 
associated with starch-based WPCs. While starch and 
other natural polymers are promising for biodegradable 
composites, their high moisture sensitivity restricts their 
applicability. Incorporating appropriate fillers has proven 
to be an effective means of reducing this sensitivity while 
simultaneously enhancing mechanical performance [57].

Overall, these findings reinforce the interdependence 
between formulation, processing route, and microstructural 
development in determining the water absorption 

several extreme outliers (19%, 25.83%, 27%, 31.6%, 48.6%, 
and 51.07%) demonstrate that, in specific formulations, water 
absorption can be several times greater than the typical 
range observed. Such dispersion highlights the strong 
influence of material composition, processing, and fiber-
matrix interactions on the hydrophilic behavior of WPCs. 

Figure 9: Results of composites subjected to the 24-hour water absorption test.

Source: The Authors.

The water absorption behavior of WPCs varies widely 
depending on formulation and processing parameters. 
The lowest mean value reported (0.17%) was obtained for 
a PVC-based composite with wood flour [47], in a study 
that extended earlier work where part of the wood filler 
was replaced with chalk as a mineral filler, combined with 
dioctyl phthalate plasticizer, to reduce water uptake [48].
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In general, increasing filler content tends to reduce 
the mechanical properties of WPCs, an effect particularly 
evident in studies that systematically varied this parameter 
[46,62,76,93,154]. For instance, tensile strength decreased 
by 31% when coffee silverskin content increased from 
2% (22.7 MPa) to 20% (15.6 MPa) [84]. In the same study, 
replacing the filler with wheat bran resulted in an even 
greater loss of 47%, from 2.5% (17 MPa) to 20% (9 MPa). 
These reductions were attributed to increased porosity 
and insufficient interfacial adhesion, exacerbated by the 
presence of proteins that may reduce stress transfer by 
allowing the polymer matrix to slide over the filler particles.

In some cases, an initial increase in tensile strength 
was observed with increasing filler content, followed by 
a decline. The initial gain was associated with improved 
microcellular structure and an increase in the effective 
load-bearing area, while the subsequent reduction was 
linked to intensified filler-filler interactions and particle 
agglomeration [164,167,174]. However, the trend for flexural 
strength does not always mirror that of tensile behavior. 
For example, increasing acacia fiber content from 50% to 
70% resulted in a 43% decrease in tensile strength (from 23 
to 13 MPa) and a 50% decrease in flexural strength (from 
6.50 to 3.25 MPa) [163]. Conversely, another study reported 
only a 5% decrease in tensile strength when filler content 
increased from 10% to 30%, accompanied by a 30% 
increase in flexural strength. In this case, the incorporation 
of wood fibers enhanced the rigidity of the HDPE matrix, 
which improved its flexural performance despite the slight 
reduction in tensile strength [123]. Higher filler content, 
particularly with wood-based composites, also increases 
water absorption [168,175]. This behavior is attributed 
to the hydrophilic nature of sawdust, which hydroxyl 
groups form hydrogen bonds with water, compounded by 
deficient matrix–filler interfaces, resulting in higher water 
uptake and weight gain [168].

A common strategy to mitigate mechanical 
property losses in high-filler composites is the use of 
compatibilizers. Composites without compatibilizers 
showed decreased tensile and flexural strength with 
increasing filler content [114], whereas the addition 
of 3.5% maleic anhydride (AM) in a PP matrix enabled 
more effective stress transfer to lantana fibers, 
enhancing strength at higher loadings. Similar behavior 
was reported in other studies [79,145]. Moreover, the 
use of various compatibilizing agents (MAPP, lignin, 
and nanolignin) has been shown to optimize the 
performance of PP composites with a high filler content, 
containing 60% industrial wood residues [176].

performance of WPCs. Optimizing these parameters – 
particularly processing temperature, filler characteristics, and 
molding technique – is essential for achieving composites 
with low water uptake and robust mechanical properties.

8. FILLER CONTENT

Filler content in polymer composites directly affects their 
mechanical, physical, and processing properties [130]. 
Figure 10 summarizes the distribution of filler contents 
reported in the reviewed studies. The most frequent 
formulations are concentrated between 20 and 40 wt%, 
with the 30–40 wt% range showing the highest occurrence, 
which is consistent with the recommendation of Kieling et 
al. [12], who suggest the use of up to 40 wt% vegetal fibers 
in WPCs produced from recyclable materials. Nonetheless, 
9.8% of the analyzed formulations contain more than 60 
wt% fiber, highlighting the feasibility of achieving higher 
loadings and, consequently, greater reuse of recycled 
material as filler. Although the present discussion focuses 
on fiber content, particle morphology also plays a 
significant role in composite performance. Fibrous shapes 
combined with a homogeneous particle-size distribution 
are generally associated with better dispersion within the 
matrix and enhanced mechanical properties [172,173].

Figure 10: Distribution of filler content (wt%).

Source: The Authors.
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Overall, these findings highlight that while high filler 
content offers environmental benefits by increasing 
the use of recycled material, it can negatively affect the 
mechanical and physical properties of WPCs, highlighting 
the importance of controlling particle morphology 
and considering the use of compatibilizers to improve 
performance.

9. CRITICAL REFLECTIONS AND FUTURE 
PERSPECTIVES

The present review was developed with a specific focus 
on material composition, processing, and performance 
trends in WPCs, and therefore did not encompass certain 
broader aspects that nonetheless merit attention in 
future research. Among these are long-term performance 
evaluations under aggressive environmental exposures, 
such as high humidity, ultraviolet radiation, freeze-thaw 
cycles, and saline or chemically reactive atmospheres, 
which are essential to validate the suitability of WPCs for 
demanding structural and infrastructure applications. 
Similarly, the effects of multiple recycling and reprocessing 
cycles on mechanical integrity, filler-matrix bonding, 
and dimensional stability represent a critical area of 
investigation in the context of circular economy strategies.

WPCs are increasingly applied in exterior and 
structural contexts, which necessitates compliance 
with international standards and guidelines. The most 
widely recognized specification is the American ASTM 
D7032 [177], which outlines procedures to establish 
performance ratings for WPC deck boards, guards, 
and handrails. Additional ASTM standards provide test 
methods for mechanical characterization, including 
ASTM D7264 [178] for flexural properties of polymer 
matrix composite materials, ASTM D790 [179] for 
flexural properties of plastics and electrical insulating 
materials, and ASTM D638 [180] for tensile properties of 
plastics, which may be applied to WPCs. Notably, these 
standards define how tests should be conducted but do 
not prescribe fixed benchmark values, as mechanical 
performance depends on variables such as wood 
species, polymer type, and manufacturing process. This 
lack of predefined performance thresholds creates a 
gap that hinders direct comparison between studies 
and complicates global standardization efforts for WPC 
products. Beyond ASTM, the ISO 20819-1 standard 
[181] specifies requirements for recycled composites, 
including health and safety considerations, test 
methods, and procedures to calculate recycled material 

content, thereby promoting sustainable production and 
responsible material sourcing in WPC manufacturing.

From an industrial and regulatory perspective, 
aligning future research with the requirements of 
international technical standards, while addressing the 
absence of harmonized performance benchmarks, will 
be crucial to enable fair comparisons, facilitate market 
acceptance, and support the wider adoption of WPCs. At 
the same time, developing scalable and resource-efficient 
production strategies can accelerate the integration 
of these composites into advanced engineering 
applications, ensuring not only technical reliability but 
also environmental and economic sustainability.

10. CONCLUSION

This review highlights the strong potential of WPCs as 
sustainable materials for civil construction, supported 
by their competitive mechanical performance, low water 
absorption, and versatility in composition and processing. 
The predominance of thermoplastic matrices such as PP 
and HDPE, often combined with compatibilizing agents 
and properly processed lignocellulosic fillers, enables 
performance levels suitable for structural use. However, 
advancing their adoption requires addressing critical 
gaps, including long-term durability under aggressive 
conditions, the influence of recycling cycles on properties, 
and alignment with international technical standards, 
which currently prescribe testing methods but lack 
harmonized benchmark values-hindering comparability 
and global standardization. Future developments 
should integrate these regulatory and performance 
considerations with scalable, resource-efficient 
manufacturing strategies, enabling applications such as 
decking systems, facade cladding and modular structural 
panels in sustainable construction.
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