

Al Opportunities for Cadastre in Support of Integrated Land Administration

Authors:

Darlan M. Nunes | Federal University of Viçosa (UFV) | darlan.nunes@ufv.br

Silvana P. Camboim | Federal University of Paraná (UFPR) | silvanacamboim@ufpr.br

Daniel C. O. Duarte | Federal University of Viçosa (UFV) | daniel.duarte@ufv.br

Jonas F. Teófilo | Federal University of Viçosa (UFV) | jonas.teofilo@ufv.br

CONTEXT & MOTIVATION

Rapid urbanisation
and climate
pressures demand
modernised
cadastral systems

Municipal inequalities

→ limited capacity to
maintain up-to-date
land data

Standards such as
LADM (ISO 191521:2024) help to ensure
semantic consistency
across cadastral
systems.

Al and GeoAl enable automation, integration and datadriven decisionmaking

Responsible Al use
can promote
inclusion,
transparency,
climate-resiliente
and land governance

OBJECTIVES & APPROACH

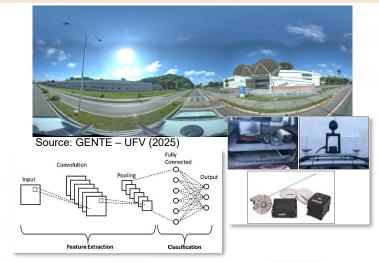
General Goal:

Explore how AI can strengthen integrated land administration aligned with LADM principles

Present two exploratory **Al-driven applications** for modernising the **multipurpose cadastre**:

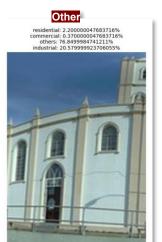
- 1 Deep-learning pipeline using 360° terrestrial mobile mapping imagery for building usage types classification
- 2 LLM-powered geospatial chatbot for cadastral management and citizen services

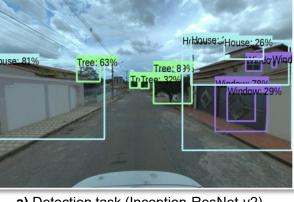
Discuss the **benefits**, **limitations** and **ethical aspects** of **Al adoption** to foster a **responsible** and **inclusive digital transformation** of **cadastral systems**


USE CASE 1


ENHANCING CADASTRAL DATA ACQUISITION AND UPDATE THROUGH AUTOMATED FEATURE EXTRACTION

Deep-learning pipeline using 360° terrestrial mobile mapping imagery for building usage-type classification


- CNN-based workflow using Inception-ResNet-v2 and EfficientNet-B7.
- Detects façades and classifies building usage types:
- residential, commercial, industrial, other
- Enhances multipurpose cadastre by supporting automated updates from 360° imagery and GeoAl.
- Improves efficiency and reduces subjectivity in urban-use mapping.
- *Limitations*: 360° complexity, occlusions, high computational cost, limited generalisation.



a) Detection task (Inception-ResNet-v2)

91,5% Train accuracy

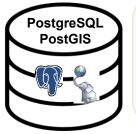
83,7% Test accuracy

b) Examples of results of automated building usage types classification (EfficientNet-B7)

USE CASE 2

SEMANTIC INTEGRATION AND INTELLIGENT INTERACTION WITH CADASTRAL INFORMATION

LLM (Large Language Model)-powered geospatial chatbot for cadastral management


- Prototype LLM chatbot connected to an LADMcompliant database.
- Retrieves cadastral information (property, infrastructure, zoning and valuation data) from the database through NATURAL-LANGUAGE QUERIES.
- Enables applications for cadastral management and citizen services.
- Promotes semantic integration, transparency and accessibility.
- Limitations: Depends on well-structured and standardised databases (e.g. LADM); requires human oversight to ensure semantic accuracy and prevent Al misinterpretation.

NLP

⇒ SQL

Qwen 2.5 (OpenAl GPT-4o)

SELECT
COUNT(*) AS total_unpaved,
ROUND(
(COUNT(*) * 100.0 / (SELECT
COUNT(*) FROM streets)),

) AS percentage_unpaved FROM streets WHERE surface_type = 'unpaved';

GEOAI-DRIVEN STUDIES IN LAND ADMINISTRATION

Some Research and Applications of AI in Land Administration (Brazil and beyond)

Application Area	Key Technologies	Main Contribution	References
Literature Review & Trend Analysis	AI, Machine Learning, Structural Topic Modelling	Al-assisted review highlighting key LADM trends and research focus.	McCord, 2022 Aditya et al., 2024 Uşak et al., 2024 Hosseini et al., 2025 Mehmood et al., 2025
3D Cadastre & BIM Integration	BIM, 3D Cadastral Data, Sensors	Low-cost 3D Digital Twin for urban management and sustainability.	Aditya et al., 2024 Andritsou et al., 2024 Shahidinejad et al., 2025 Widyastuti et al., 2025
Land Consolidation & Management	GIS, Automated Algorithms	Method to assess complexity in land consolidation processes.	Maciąg et al., 2024 Mango et al., 2023
Mass Property Valuation	GeoAl, Machine Learning (XGBoost, LightGBM)	GeoAl model for fair and accurate property tax valuation.	Droj et al., 2024 Gao et al., 2022 Mete, 2025
Cadastral Data Integration with LADM (Brazil)	LADM	Framework for integrating urban, rural and asset cadastres in Brazil.	Santos et al., 2013 Marra et al., 2017 Purificação et al., 2019 Vasquez et al., 2019
Multipurpose Cadastre Implementation (Brazil)	3D/4D Cadastre	Discussion on benefits and challenges of implementing 3D/4D cadastres.	Panchiniak et al., 2009 Carneiro et al., 2012 Paixão et al., 2012 Latawiec et al., 2017 Cabral et al., 2020

GEOAI-DRIVEN STUDIES

Are National Spatial Data Infrastructures Adequate for Achieving the 2030 Agenda? A Case Study of Brazil's NSDI from the Perspective of UN-GGIM Fundamental Themes

Transactions in GIS

Collaborative Toponyms in OpenStreetMap: an open-source framework to investigate the relationship with intrinsic quality parameters

Cartography and Geographic Information Science

Forthcoming

Is Al-Based Toponym Extraction of Street-Level Imagery a Reliable Approach for Validating OpenStreetMap Toponyms?

Boletim de Ciências Geodésicas

FINAL REMARKS

- Al and GeoAl are reshaping land administration
 Enhancing efficiency, accuracy, and interoperability across cadastral systems
- **2** GeoAl-based pipelines
 Enable automated feature extraction and continuous updating of cadastral data from imagery
- 3 LLM-powered tools
 Improve semantic integration and natural interaction with cadastral information
- 4 Structured models such as LADM
 Essential to ensure data consistency, interoperability, and legal traceability
- **5** Ethical, transparent, and responsible Al adoption It is critical to maintain public trust in land Governance in the era of Al
- 6 Interdisciplinary collaboration

 Between technical, legal, and institutional actors is key to scaling AI integration
- 7 Future research
 Should advance standardisation, open data practices, and equitable access to Al technologies

Fairness & Bias Mitigation

Avoid algorithmic bias in data or models

Inclusion & Accessibility

Ensure equitable and citizen-centric systems.

Privacy & Data Protection

Safeguard personal and spatial data

of GeoAl (Kang et al., 2024)

Five pillars of ethical

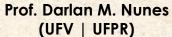
and responsible use

Accountability & Oversight

Maintain human supervision and responsibility

Transparency & Explainability

Make Al reasoning traceable and understandable.



THANK YOU ALL!

Profa. Silvana P. Camboim Prof. Daniel C. O. Duarte (UFPR)

(UFV)

MSc. Jonas F. Teófilo (UFV)

execução

patrocinadores

